Micro-Cutting


Book Description

Micro-Cutting: Fundamentals and Applications comprehensively covers the state of the art research and engineering practice in micro/nano cutting: an area which is becoming increasingly important, especially in modern micro-manufacturing, ultraprecision manufacturing and high value manufacturing. This book provides basic theory, design and analysis of micro-toolings and machines, modelling methods and techniques, and integrated approaches for micro-cutting. The fundamental characteristics, modelling, simulation and optimization of micro/nano cutting processes are emphasized with particular reference to the predictabilty, producibility, repeatability and productivity of manufacturing at micro and nano scales. The fundamentals of micro/nano cutting are applied to a variety of machining processes including diamond turning, micromilling, micro/nano grinding/polishing, ultraprecision machining, and the design and implementation of micro/nano cutting process chains and micromachining systems. Key features • Contains contributions from leading global experts • Covers the fundamental theory of micro-cutting • Presents applications in a variety of machining processes • Includes examples of how to implement and apply micro-cutting for precision and micro-manufacturing Micro-Cutting: Fundamentals and Applications is an ideal reference for manufacturing engineers, production supervisors, tooling engineers, planning and application engineers, as well as machine tool designers. It is also a suitable textbook for postgraduate students in the areas of micro-manufacturing, micro-engineering and advanced manufacturing methods.




Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning


Book Description

This book presents an in-depth study and elucidation on the mechanisms of the micro-cutting process, with particular emphasis and a novel viewpoint on materials characterization and its influences on ultra-precision machining. Ultra-precision single point diamond turning is a key technology in the manufacture of mechanical, optical and opto-electronics components with a surface roughness of a few nanometers and form accuracy in the sub-micrometric range. In the context of subtractive manufacturing, ultra-precision diamond turning is based on the pillars of materials science, machine tools, modeling and simulation technologies, etc., making the study of such machining processes intrinsically interdisciplinary. However, in contrast to the substantial advances that have been achieved in machine design, laser metrology and control systems, relatively little research has been conducted on the material behavior and its effects on surface finish, such as the material anisotropy of crystalline materials. The feature of the significantly reduced depth of cut on the order of a few micrometers or less, which is much smaller than the average grain size of work-piece materials, unavoidably means that conventional metal cutting theories can only be of limited value in the investigation of the mechanisms at work in micro-cutting processes in ultra-precision diamond turning.







Micromachining with Nanostructured Cutting Tools


Book Description

Stress-reducing defects and subsequent microcracks are a central focus during micromachining processes. After establishing the central process of micromachining Micromachining with Nanostructured Cutting Tools explains the underlying theories that describe chip formation and applies elementary cutting theory to machining at the microscale. Divided into three parts, the second half of Micromachining with Nanostructured Cutting Tools develops on this introduction; explaining how frictional interactions between uncoated and micro tools coated with nanostructered coatings can be characterized by using the elementary micromachining theories that were initially developed for machining at the macroscale. Shaw’s methods for calculating temperatures at the interaction zone and Merchant’s methods for calculating mechanical interactions are well described and justified for machining steel in both the dry and wet states. Finally, the further development and use of micro tools coated with thin-film nanostructured diamonds are shown. Micromachining with Nanostructured Cutting Tools is a resource for engineers and scientists working in this new field of micro and nanotechnology. The explanations of how to characterize, apply and adapt traditional approaches of understanding the mechanics of practical machining to the machining of microproducts using nanostructured tools provides a reliable reference for researchers and practitioners alike.




Micro/Nano Manufacturing


Book Description

This book is a printed edition of the Special Issue "Micro/Nano Manufacturing" that was published in Micromachines




Micromachining


Book Description

In this volume, Micromachining - New Trends and Applications, researchers from distant parts of the world have combined efforts and contributed their ideas and research work on micromachining. Their chapters will give you the opportunity to learn about materials, techniques, applications, challenges, and recent advancements in micromachining technology as well as about the state of the current micromachining market. Chapters also discuss concepts of micro-scale electronic component manufacturing, advancements in micromachining techniques of micro-electromechanical system (MEMS) piezoresistive pressure sensors to minimize offset drift due to humidity and temperature, the principles and classifications of force measuring systems with zero-compliance suspension, and triangular microcavity fabrication using micro-electrical discharge machining.







Non-traditional Micromachining Processes


Book Description

This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.




Materials, Mechatronics and Automation


Book Description

A forum for those researchers, educators, engineers, and government officials involved in the general areas of Materials, Mechatronics and Automation and sensors, was provided by this collection of peer-reviewed papers. The resultant dissemination of the latest research results, and the exchanges of views concerning the future research directions to be taken by these fields makes the work of immense value to all those having an interest in the topics covered. Volume is indexed by Thomson Reuters CPCI-S (WoS). The more than 387 papers are grouped into: Chapter 1: Intelligent Mechatronics, Robotics, Biomimetics, Automation, Chapter 2: Materials, Mechatronics and Automation, Chapter 3: Industrial Automation and Manufacturing Process.




Advanced Modeling and Optimization of Manufacturing Processes


Book Description

Advanced Modeling and Optimization of Manufacturing Processes presents a comprehensive review of the latest international research and development trends in the modeling and optimization of manufacturing processes, with a focus on machining. It uses examples of various manufacturing processes to demonstrate advanced modeling and optimization techniques. Both basic and advanced concepts are presented for various manufacturing processes, mathematical models, traditional and non-traditional optimization techniques, and real case studies. The results of the application of the proposed methods are also covered and the book highlights the most useful modeling and optimization strategies for achieving best process performance. In addition to covering the advanced modeling, optimization and environmental aspects of machining processes, Advanced Modeling and Optimization of Manufacturing Processes also covers the latest technological advances, including rapid prototyping and tooling, micromachining, and nano-finishing. Advanced Modeling and Optimization of Manufacturing Processes is written for designers and manufacturing engineers who are responsible for the technical aspects of product realization, as it presents new models and optimization techniques to make their work easier, more efficient, and more effective. It is also a useful text for practitioners, researchers, and advanced students in mechanical, industrial, and manufacturing engineering.