Micro Light Emitting Diode: Fabrication and Devices


Book Description

This book focuses on basic fundamental and applied aspects of micro-LED, ranging from chip fabrication to transfer technology, panel integration, and various applications in fields ranging from optics to electronics to and biomedicine. The focus includes the most recent developments, including the uses in large large-area display, VR/AR display, and biomedical applications. The book is intended as a reference for advanced students and researchers with backgrounds in optoelectronics and display technology. Micro-LEDs are thin, light-emitting diodes, which have attracted considerable research interest in the last few years. They exhibit a set of exceptional properties and unique optical, electrical, and mechanical behaviors of fundamental interest, with the capability to support a range of important exciting applications that cannot be easily addressed with other technologies. The content is divided into two parts to make the book approachable to readers of various backgrounds and interests. The first provides a detailed description with fundamental materials and production approaches and assembly/manufacturing strategies designed to target readers who seek an understanding ofof essential materials and production approaches and assembly/manufacturing strategies designed to target readers who want to understand the foundational aspects. The second provides detailed, comprehensive coverage of the wide range of device applications that have been achieved. This second part targets readers who seek a detailed account of the various applications that are enabled by micro-LEDs.




LED Lighting


Book Description

LED Lighting is a self-contained and introductory-level book featuring a blend of theory and applications that thoroughly covers this important interdisciplinary area. Building on the underlying fields of optics, photonics, and vision science, it comprises four parts. PART I is devoted to fundamentals. The behavior of light is described in terms of rays, waves, and photons. Each of these approaches is best suited to a particular set of applications. The properties of blackbody radiation, thermal light, and incandescent light are derived and explained. The essentials of semiconductor physics are set forth, including the operation of junctions and heterojunctions, quantum wells and quantum dots, and organic and perovskite semiconductors. PART II deals with the generation of light in semiconductors, and details the operation and properties of III-V semiconductor devices (MQWLEDs and μLEDs), quantum-dot devices (QLEDs & WOLEDs), organic semiconductor devices (OLEDs, SMOLEDs, PLEDs, & WOLEDs), and perovskite devices (PeLEDs, PPeLEDs, QPeLEDs, & PeWLEDs). PART III focuses on vision and the perception of color, as well as on colorimetry. It delineates radiometric and photometric quantities as well as efficacy and efficiency measures. It relays the significance of metrics often encountered in LED lighting, including the color rendering index (CRI), color temperature (CT), correlated color temperature (CCT), and chromaticity diagram. PART IV is devoted to LED lighting, focusing on its history and salutary features, and on how this modern form of illumination is deployed. It describes the principal components used in LED lighting, including white phosphor-conversion LEDs, chip-on-board (COB) devices, color-mixing LEDs, hybrid devices, LED filaments, retrofit LED lamps, LED luminaires, and OLED light panels. It concludes with a discussion of smart lighting and connected lighting. Each chapter contains highlighted equations, color-coded figures, practical examples, and reading lists.




Wide Bandgap Semiconductor Based Micro/Nano Devices


Book Description

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.




Iii-nitride Devices And Nanoengineering


Book Description

Devices, nanoscale science and technologies based on GaN and related materials, have achieved great developments in recent years. New GaN-based devices such as UV detectors, fast p-HEMT and microwave devices are developed far more superior than other semiconductor materials-based devices.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory and experiment.This book is an invaluable resource for device design and processing engineers, material growers and evaluators, postgraduates and scientists as well as newcomers in the GaN field./a




Micro LEDs


Book Description

MicroLEDs', Volume 106 is currently recognized as the ultimate display technology and one of the fastest-growing technologies in the world as technology giants utilize it on a wide-ranging set of products. This volume combines contributions from MicroLED pioneers and world's leading experts in the field who focus on the MicroLED development, current cutting-edge technologies of pursuing for realizing MicroLED large flat panel displays and televisions, virtual reality and 3D displays, light source for LI-FI data communications, neural interface and optogenetics, and future MicroLED technology trends. - Contains contributions from original MicroLED inventors and pioneers - Provides the most comprehensive and updated status of MicroLED technological advancements and applications - Updates on future MicroLED technology trends




Polymers for Light-emitting Devices and Displays


Book Description

Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.




Optics in Our Time


Book Description

Light and light based technologies have played an important role in transforming our lives via scientific contributions spanned over thousands of years. In this book we present a vast collection of articles on various aspects of light and its applications in the contemporary world at a popular or semi-popular level. These articles are written by the world authorities in their respective fields. This is therefore a rare volume where the world experts have come together to present the developments in this most important field of science in an almost pedagogical manner. This volume covers five aspects related to light. The first presents two articles, one on the history of the nature of light, and the other on the scientific achievements of Ibn-Haitham (Alhazen), who is broadly considered the father of modern optics. These are then followed by an article on ultrafast phenomena and the invisible world. The third part includes papers on specific sources of light, the discoveries of which have revolutionized optical technologies in our lifetime. They discuss the nature and the characteristics of lasers, Solid-state lighting based on the Light Emitting Diode (LED) technology, and finally modern electron optics and its relationship to the Muslim golden age in science. The book’s fourth part discusses various applications of optics and light in today's world, including biophotonics, art, optical communication, nanotechnology, the eye as an optical instrument, remote sensing, and optics in medicine. In turn, the last part focuses on quantum optics, a modern field that grew out of the interaction of light and matter. Topics addressed include atom optics, slow, stored and stationary light, optical tests of the foundation of physics, quantum mechanical properties of light fields carrying orbital angular momentum, quantum communication, and Wave-Particle dualism in action.




Organic Light Emitting Diode (OLED) Toward Smart Lighting and Displays Technologies


Book Description

The book Organic Light Emitting Diode (OLED) Toward Smart Lighting and Displays Technologies, edited by Laxman Singh, Rituraj Dubey, and Prof. R. N. Rai, strives to address the multiple aspects of OLEDs and their applications in developing smart lightings and displays. OLEDs have been used in almost all kinds of digital displays like those of mobile phones, laptops, tablets, phablets, TVs, etc., due to their outstanding features, including superior color quality, low cost, wide viewing angle, easy fabrication, mercury-free manufacture, tenability, stretchability, flexibility, etc. Investigations related to the synthesis of new organic materials and fabrication techniques have inspired us to write this book, which will fulfil the desire and thirst of OLEDs-based researchers. Features Nanolithographic techniques used and the challenges involved Printing technology for fabrication Designing of hybrid perovskites Stretchable and flexible materials used Metal–dielectric composites and efficiency of organic semiconductor via molecular doping for OLEDs applications Organic small molecule materials and display technologies involved New generation of organic materials with respect to photophysical approach Mixed valence π-conjugated coordination polymers used Electroluminescent polymer used Blue fluorescent and phosphorescent organic materials used In comparison to other books available related to similar topics, this book aims at those audiences who are looking for a single source for a comprehensive understanding of strategies and their challenges with respect to material fabrication of OLEDs. This book covers the pace and productivity at a uniform level in each chapter with respect to the audiences, from doctoral student to postdoctoral researchers or from postdoctoral researchers to multidisciplinary field researchers with a background in physics, chemistry, materials science, and engineering, who are already working with organic materials and their applications.




Nanoelectronic Devices and Applications


Book Description

Nanoelectronic Devices and Applications presents reviews on recent advances in nanoelectronic device design and new directions for their practical use. The volume includes 16 edited chapters that cover novel material systems, band engineering, modelling and simulations, fabrication and characterization techniques, and their emerging applications. The discussions presented in this book are based on current understandings on innovations and future trends, and references are provided for advanced scholars. Chapter 1 presents an overview of recent innovations and future prospects in III-nitride semiconductor technologies for RF, power, digital and quantum applications. Chapter 2 reports new trends in GaN-based optical devices for sensing and micro-display applications. Chapter 3 shows current interests in nanophosphors and their utilizations in improving device performance of InGaN nanowire light-emitting diodes (LEDs). Recent studies on the effect of potential profile on the carrier transport in AlGaAs based double quantum well structures and their applications are presented in Chapter 4. The recent progress in high-electron-mobility transistors (HEMTs) is presented through Chapters 5, 6, and 7. A comprehensive review on β-Ga2O3 emphasizing material properties, growth approaches, and its applications for next-generation high-power nanoelectronics; the effect of dielectric layers on the characteristics of AlN/β-Ga2O3 HEMTs are presented in Chapter 8 and 9 respectively. Chapters 10-14 summarize the recent studies in field-effect transistors (FETs) adopting different materials and structures. Chapter 15 presents current research in 2D Tungsten Diselenide (WSe2) with special focus on the material properties, device structures, applications, and challenges. Finally, Chapter 16 presents a systematic review of memristors, and memristive semiconductor devices. The book is intended as a primary resource for elective subjects in advanced electronics and computer engineering courses at university level. Researchers and industry professionals will also learn about emerging trends and state-of-the-art research in nanoelectronics.




Nitride Semiconductor Light-Emitting Diodes (LEDs)


Book Description

Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications, Second Edition reviews the fabrication, performance and applications of the technology, encompassing the state-of-the-art material and device development, along with considerations regarding nitride-based LED design. This updated edition is based on the latest research and advances, including two new chapters on LEDs for large displays and laser lighting. Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques, the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. The book also addresses the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots. Further chapters discuss the development of LED encapsulation technology and fundamental efficiency droop issues in gallium indium nitride (GaInN) LEDs. It is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors. - Features new chapters on laser lighting, addressing the latest advances on this topic - Reviews fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development - Covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots - Highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infra-red emitters, and automotive lighting - Provides a comprehensive discussion of gallium nitride on both silicon and sapphire substrates