Micro and Nanoengineering of the Cell Microenvironment


Book Description

Supported with 140 illustrations, the volume exhaustively covers the micro- and nano-system technologies involved in developing cell-based bioengineering applications. You get full details on efforts to engineer the soluble and insoluble cell microenvironments, including the latest advances in microfluidic devices, surface patterning, 3D scaffolds, and techniques for engineering cellular mechanical properties and topography.




Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine


Book Description

Millions of patients suffer from end-stage organ failure or tissue loss annually, and the only solution might be organ and/or tissue transplantation. To avoid poor biocompatibility–related problems and donor organ shortage, however, around 20 years ago a new, hybridized method combining cells and biomaterials was introduced as an alternative to whole-organ and tissue transplantation for diseased, failing, or malfunctioning organs—regenerative medicine and tissue engineering. This handbook focuses on all aspects of intelligent scaffolds, from basic science to industry to clinical applications. Its 10 parts, illustrated throughout with excellent figures, cover stem cell engineering research, drug delivery systems, nanomaterials and nanodevices, and novel and natural biomaterials. The book can be used by advanced undergraduate- and graduate-level students of stem cell and tissue engineering and researchers in macromolecular science, ceramics, metals for biomaterials, nanotechnology, chemistry, biology, and medicine, especially those interested in tissue engineering, stem cell engineering, and regenerative medicine.




Functional 3D Tissue Engineering Scaffolds


Book Description

In order to grow replacement tissues, 3D scaffolds are widely used as a template for tissue engineering and regeneration. These scaffolds, which are typically 'seeded' with cells, support the growth of new tissues. However, in order to achieve successful tissue growth, the scaffold must meet specific requirements and are often 'functionalized' to accentuate particular properties. Functional 3D tissue engineering scaffolds: materials, technologies, and applications, is a comprehensive review of functional 3D scaffolds, providing information on the fundamentals, technologies, and applications. Part 1 focuses on the fundamentals of 3D tissue scaffolds, examining information on materials, properties, and trends. Part 2 discusses a wide range of conventional technologies for engineering functional 3D scaffolds, leading the way to a discussion on CAD and advanced technologies for functional 3D scaffold engineering. Chapters in part 3 study methods for functionalizing scaffolds to support a variety of in vivo functions whilst the final set of chapters provides an important review of the most significant applications of functional 3D scaffolds within tissue engineering. This book is a valuable resource for biomaterial scientists and biomedical engineers in academia and industry, with interests in tissue engineering and regenerative medicine. - Provides a self-contained work for the field of biomaterials and tissue engineering - Discusses all the requirements a scaffold must meet and a wide range of strategies to create them - Highlights significant and successful applications of functional 3D scaffolds




Computational Biology for Stem Cell Research


Book Description

Computational Biology for Stem Cell Research is an invaluable guide for researchers as they explore HSCs and MSCs in computational biology. With the growing advancement of technology in the field of biomedical sciences, computational approaches have reduced the financial and experimental burden of the experimental process. In the shortest span, it has established itself as an integral component of any biological research activity. HSC informatics (in silico) techniques such as machine learning, genome network analysis, data mining, complex genome structures, docking, system biology, mathematical modeling, programming (R, Python, Perl, etc.) help to analyze, visualize, network constructions, and protein-ligand or protein-protein interactions. This book is aimed at beginners with an exact correlation between the biomedical sciences and in silico computational methods for HSCs transplantation and translational research and provides insights into methods targeting HSCs properties like proliferation, self-renewal, differentiation, and apoptosis. - Modeling Stem Cell Behavior: Explore stem cell behavior through animal models, bridging laboratory studies to real-world clinical allogeneic HSC transplantation (HSCT) scenarios. - Bioinformatics-Driven Translational Research: Navigate a path from bench to bedside with cutting-edge bioinformatics approaches, translating computational insights into tangible advancements in stem cell research and medical applications. - Interdisciplinary Resource: Discover a single comprehensive resource catering to biomedical sciences, life sciences, and chemistry fields, offering essential insights into computational tools vital for modern research.




Bionanotechnology II


Book Description

The impact and importance of nanotechnology continues to grow, and nanomedicine and biotechnology have become areas of increased development. Biomedical engineers who work with biological processes and structures must have a deeply rooted understanding of the role of bionanotechnology, a rapidly evolving sector of the nanotechnology field. Bionanotechnology II: Global Prospects, a follow-up to the editor’s highly successful first volume, contains 26 entirely new contributions that provide a broad survey of research shaping this critical field. With coverage of technical and nontechnical areas, the book offers representative reporting on a wide variety of activity from around the world. It discusses the role of nanotechnology in novel medical devices, bioanalytical technologies, and nanobiomaterials. Topics discussed include: Emerging microscale technologies Bionanotech-based water treatment Tissue engineering and drug delivery Antimicrobial nanomaterials in the textile industry Bionanotechnology applications in plants and agriculture With contributions from researchers in Israel, Egypt, Iran, Jordan, Singapore, South Africa, Turkey, Thailand, Argentina, the United Kingdom, and the United States, this volume presents a worldwide perspective on some of the critical areas shaping bionanotechnology today.




Cellular Mechanics and Biophysics


Book Description

This book focuses on the mechanical properties of cells, discussing the basic concepts and processes in the fields of immunology, biology, and biochemistry. It introduces and explains state-of-the-art biophysical methods and examines the role of mechanical properties in the cell/protein interaction with the connective tissue microenvironment. The book presents a unique perspective on cellular mechanics and biophysics by combining the mechanical, biological, physical, biochemical, medical, and immunological views, highlighting the importance of the mechanical properties of cells and biophysical measurement methods. The book guides readers through the complex and growing field of cellular mechanics and biophysics, connecting and discussing research findings from different fields such as biology, cell biology, immunology, physics, and medicine. Featuring suggestions for further reading throughout and addressing a wide selection of biophysical topics, this book is an indispensable guide for graduate and advanced undergraduate students in the fields of cellular mechanics and biophysics.




Stem Cells and Cancer Stem Cells, Volume 7


Book Description

The seventh in Springer’s landmark series of edited volumes on one of the highest-profile subjects in contemporary medicine and scientific endeavour, this volume sets out to cover a staggering range of research into the medical applications of stem cell research. While stem cells are the very stuff of life for multicellular organisms, including us humans, the cancer stem cell is a morbid entity with a robust resistance to therapies including conventional chemotherapy. This authoritative publication explains the regenerative potential of stem cells and their mesenchymal progeny, reviewing clinical applications of the latter in the treatment of cancer, diabetes and neurodegenerative pathologies. It covers the entire range of stem cells with known potential for therapeutic use, from human embryonic to germ cell-derived pluripotent stem cells and hematopoietic stem cells. The chapters also deal with the role of TGF-beta in propagating human embryonic stem cells, and in facilitating their differentiation. Featuring discussions of molecular signaling pathways that modulate mesenchymal stem cell self-renewal and much more, this book is certain to have broad appeal among academicians and physicians alike.




Functional Materials for Bio-Applications


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Glaucoma Research and Clinical Advances


Book Description

Foreword Volume 2 of our serial publication continues our desire to address glaucoma with a combination of science and speculation. As science expands, the emphasis is on data, interpretation, and dogma. We disagree; open minds open new approaches. Using methodologies that are primarily molecular and genetic, we seek to refine the causes of glaucoma as well as how it is best treated, especially incorporating thoughts and hypotheses about new methods of treatment. Glaucoma is a complex disease, and genetics proves that a variety of proteins are culpable at one level. At another level, however, there are likely final common pathways and numerous feedback loops which have defied explanations to date. The search for answers goes on in basic science researcher’s laboratories and clinical ophthalmologist’s offices and operating rooms. We are all well-served by understanding that glaucoma is a neurodegenerative disease. Current attempts to solve the disease have focused on two strategic arenas: the trabecular meshwork function and its impact on intraocular pressure as a major risk factor for the disease; and the optic nerve dysfunction leading to visual loss. Genetic mutations have yielded puzzling clues to the cause, but without resolution. For example, mutations in myocilin and optineurin genes are closely connected to the phenotype, but how do they cause the disease? In the next two years, priority areas of research are signaling pathway discoveries, biomarker panels, epigenetic factors, and continued genomic studies to yield answers to the common final pathways of the disease. The final pathways are complex and redundant, such that the overlap of bio-informatics will be challenging. Current promising leads suggest the innate immune system holds important clues to both trabecular meshwork and optic nerve pathophysiology. When the primary open-angle glaucoma disease pathways are unraveled, drug discoveries and new treatment modalities will be available for better regulation of intraocular pressure and neuroprotection for the optic nerve. This volume discusses the glaucoma pipeline from several perspectives as well as future candidate classes. As always, the authors herein are urged to speculate on how the cure of glaucomatous optic nerve damage will yield to new treatments. John R. Samples Clinical Professor, Elson S. Floyd College of Medicine, Washington State University School of Medicine www.glaucomaconcepts.com Paul A. Knepper Associate Professor of Ophthalmology, Feinberg School of Medicine, Northwestern University Medical School Research Scientist, University of Illinois at Chicago




Gold Nanoparticles for Drug Delivery


Book Description

Gold Nanoparticles for Drug Delivery discusses the synthesis and characterization of gold nanoparticles (AuNPs), presenting an historical introduction to the developments in the area, discussing methods and characterization parameters, covering targeted delivery strategies, treatment of cancer, CNS conditions, infectious diseases, HIV/AIDS infection, wound healing and tissue regeneration, dentistry, gene delivery, and its photo properties used in diagnostic and therapies, and finally presenting regulatory aspects such as theranostic applications, vaccine development, toxicity, and the translation of research to marketable products. This book is a complete reference for researchers in nanotechnology drug delivery and pharmaceutical disciplines. Researchers in pharmaceutical industries, especially those involved in the use of gold nanoparticles in the field of drug delivery, diagnosis, targeted and early therapies will also benefit from this book. - Covers gold nanoparticles' characterization and synthesis techniques related to drug delivery - Focuses on targeting strategies using gold nanoparticles for efficient drug delivery - Provides a consolidated overview of applications of gold nanoparticles for drug delivery to several systems and conditions