Micro-scaled Products Development via Microforming


Book Description

‘Micro-scaled Products Development via Microforming’ presents state-of-the-art research on microforming processes, and focuses on the development of micro-scaled metallic parts via microforming processes. Microforming refers to the fabrication of microparts via micro-scaled plastic deformation and presents a promising micromanufacturing process. When compared to other micromanufacturing processes, microforming offers advantages such as high productivity and good mechanical properties of the deformed microparts. This book provides extensive and informative illustrations, tables and photos in order to convey this information clearly and directly to readers. Although the knowledge of macroforming processes is abundant and widely used in industry, microparts cannot be developed by leveraging existing knowledge of macroforming because the size effect presents a barrier to this knowledge transfer. Therefore systematic knowledge of microforming needs to be developed. In tandem with product miniaturization, the demand on microparts has been increased for their wide applications in many industries, including automotive, bio-medical, aerospace and consumer electronics industries. Micromanufacturing technologies have thus become more and more important. This book is intended for postgraduates, manufacturing engineers and professionals working in the areas of manufacturing and materials processing.




Sheet Metal Meso- and Microforming and Their Industrial Applications


Book Description

The book presents a compilation of research on meso/microforming processes, and offers systematic and holistic knowledge for the physical realization of developed processes. It discusses practical applications in fabrication of meso/microscale metallic sheet-metal parts via sheet-metal meso/microforming. In addition, the book provides extensive and informative illustrations, tables, case studies, photos and figures to convey knowledge of sheet-metal meso/microforming for fabrication of meso/microscale sheet-metal products in an illustrated manner. Key Features • Presents complete analysis and discussion of micro sheet metal forming processes • Guides reader across the mechanics, failures, prediction of failures and tooling and prospective applications • Discusses definitions of multi-scaled metal forming, sheet-metal meso/microforming and the challenges in such domains • Includes meso/micro-scaled sheet-metal parts design from a micro-manufacturability perspective, process determination, tooling design, product quality analysis, insurance and control • Covers industrial application and examples




Sheet Metal Meso- and Microforming and Their Industrial Applications


Book Description

The book presents a compilation of research on meso/microforming processes, and offers systematic and holistic knowledge for the physical realization of developed processes. It discusses practical applications in fabrication of meso/microscale metallic sheet-metal parts via sheet-metal meso/microforming. In addition, the book provides extensive and informative illustrations, tables, case studies, photos and figures to convey knowledge of sheet-metal meso/microforming for fabrication of meso/microscale sheet-metal products in an illustrated manner. Key Features • Presents complete analysis and discussion of micro sheet metal forming processes • Guides reader across the mechanics, failures, prediction of failures and tooling and prospective applications • Discusses definitions of multi-scaled metal forming, sheet-metal meso/microforming and the challenges in such domains • Includes meso/micro-scaled sheet-metal parts design from a micro-manufacturability perspective, process determination, tooling design, product quality analysis, insurance and control • Covers industrial application and examples




Microforming Technology


Book Description

Microforming Technology: Theory, Simulation and Practice addresses all aspects of micromanufacturing technology, presenting detailed technical information and the latest research developments. The book covers fundamentals, theory, simulation models, equipment and tools design, practical micromanufacturing procedures, and micromanufacturing-related supporting systems, such as laser heating system, hydraulic system and quality evaluation systems. Newly developed technology, including micro wedge rolling, micro flexible rolling and micro hydromechanical deep drawing, as well as traditional methods, such as micro deep drawing, micro bending and micro ultrathin strip rolling, are discussed. This will be a highly valuable resource for those involved in the use, study and design of micro products and micromanufacturing technologies, including engineers, scientists, academics and graduate students. Provides an accessible introduction to the fundamental theories of microforming, size effects, and scaling laws Includes explanations of the procedures, equipment, and tools for all common microforming technologies Explains the numerical modeling procedures for 7 different types of microforming




Size Effects in Engineering Mechanics, Materials Science, and Manufacturing


Book Description

Size Effects in Engineering Mechanics and Manufacturing provides a detailed evaluation of size effects in mechanics, manufacturing and material sciences and their effects on related physical behaviors and phenomena. Sections address the physical aspects of size effects, including tension, compression, and bending deformation in mechanics, fatigue and damage behaviors, the mechanisms behind these effects, modeling techniques for determining the behavior and phenomena of size effects, practical applications of size effects in material sciences and micro-manufacturing, how size effects influence the process performance, process outcome, properties and quality of fabricated parts and components, and future size effects.This book provides not only a reference volume on size effects but also valuable applications for engineers, scientists, academics and research students involved in materials processing, manufacturing, materials science and engineering, engineering mechanics, mechanical engineering and the management of enterprises using materials processing technologies in the mass-production of related products. Describes the physical aspects of size effects and provides the underlying theories and principles to explain the mechanisms behind them Presents the practical applications of size effects in material sciences and micro-manufacturing and outlines the influence of process performance, process outcome, properties, and quality of fabricated parts and components Provides guidelines to understand size effects in multi-scaled manufacturing process design and product development




Micro-Manufacturing


Book Description

This book is the first of its kind to collectively address design-based and mechanical micro-manufacturing topics in one place. It focuses on design and materials selection, as well as the manufacturing of micro-products using mechanical-based micro-manufacturing process technologies. After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes, such as: micro-forming, micro-machining, micro-molding, micro-laser processing, micro-layered manufacturing, micro-joining, micro-assembly and materials handling, and microEDM and ECM. The book provides an in-depth understanding of materials behavior at micro-scales and under different micro-scale processing conditions, while also including a wide variety of emerging micro-scale manufacturing issues and examples.




Micro-Manufacturing Technologies and Their Applications


Book Description

This book provides in-depth theoretical and practical information on recent advances in micro-manufacturing technologies and processes, covering such topics as micro-injection moulding, micro-cutting, micro-EDM, micro-assembly, micro-additive manufacturing, moulded interconnected devices, and microscale metrology. It is designed to provide complementary material for the related e-learning platform on micro-manufacturing developed within the framework of the Leonardo da Vinci project 2013-3748/542424: MIMAN-T: Micro-Manufacturing Training System for SMEs. The book is mainly addressed to technicians and prospective professionals in the sector and will serve as an easily usable tool to facilitate the translation of micro-manufacturing technologies into tangible industrial benefits. Numerous examples are included to assist readers in learning and implementing the described technologies. In addition, an individual chapter is devoted to technological foresight, addressing market analysis and business models for micro-manufacturers.




Design and Development of Metal-Forming Processes and Products Aided by Finite Element Simulation


Book Description

This book presents state-of-the-art research on forming processes and formed metal product development aided by the Finite Element Method (FEM). Using extensive and informative illustrations, tables and photographs, it systematically presents real-life case studies and established findings regarding various forming processes and methods aided by FEM simulation, and addresses various issues related to metal formed part design, process determination, die design and die service life analysis and prolongation, as well as product quality assurance and improvement. Metal forming has been widely used in many industries. This traditional manufacturing process, however, has long been linked to many years of apprenticeship and skilled craftsmanship, and its conventional design and development paradigm appeared to involve more know-how and trial-and-error than in-depth scientific calculation, analysis and simulation. The design paradigm for forming processes and metal formed product development thus cannot meet the current demands for short development lead-times, low production costs and high product quality. With the advent of numerical simulation technologies, the design and development of forming processes and metal formed products are carried out with the aid of FEM simulation, allowing all the potential design spaces to be identified and evaluated, and the best design to ultimately be determined and implemented. Such a design and development paradigm aims at ensuring “designing right the first time” and reducing the need for trial-and-error in the workshop. This book provides postgraduates, manufacturing engineers and professionals in this field with an in-depth understanding of the design process and sufficient knowledge to support metal formed part design, forming process determination, tooling design, and product quality assurance and control via FEM simulation. “/p>




Micro Metal Forming


Book Description

Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro metal forming. The description comprises information from actual research and the young history of this technology branch to be used by students, scientists and engineers in industry who already have a background in metal forming and like to expand their knowledge towards miniaturization. tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro metal forming. The description comprises information from actual research and the young history of this technology branch to be used by students, scientists and engineers in industry who already have a background in metal forming and like to expand their knowledge towards miniaturization.




Micro/Nano Manufacturing


Book Description

This book is a printed edition of the Special Issue "Micro/Nano Manufacturing" that was published in Micromachines