Micro to Quantum Supercapacitor Devices


Book Description

Supercapacitors have established their role as high-power density devices capable of storing energy for multiple cycles; these devices are more plentiful than batteries. This book outlines the fundamentals of charge-storage mechanisms in different configurations of supercapacitors. It describes the supercapacitor-related phenomena, state-of-the-art supercapacitor technologies, design and fabrication of electrodes, supercapacitor materials, macro-supercapacitor, planar supercapacitor, significance of electrode design, merits, demerits of current technologies, and future directions. It also details related physics, including prospective materials and electrode parameters. Features: Provides understanding of the device architecture, electrode design, and pros-cons of classical supercapacitors Explains material design in the context of electrochemical energy storage Covers state-of-the-art quantum supercapacitor and technological challenges Describes advanced versions of supercapacitor devices, including macro-to-micro scale devices and applications at different scales Includes details of challenges and outlines of future designs This book is aimed at researchers and professionals in electronics, electrochemistry, energy-storage engineering, chemical engineering, and materials science.




Fundamentals and Supercapacitor Applications of 2D Materials


Book Description

Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices. Explores recent developments and looks at the importance of 2D materials in energy storage technologies Presents both the theoretical and DFT related studies Discusses the impact on performance of various operating conditions Includes a brief overview of the applications of supercapacitors in various industries, including aerospace, defense, biomedical, environmental, energy, and automotive




Nanoparticles in Diagnosis, Drug Delivery and Nanotherapeutics


Book Description

The integration of nanotechnology with biomaterials, diagnostic tools, analytical equipment, physiotherapy kits, and drug delivery agents has resulted in nanotherapeutics illustrated as a class of medicine with potential of research and development. This book illustrates synthesis, properties, and applications of nanotherapeutics in various healthcare-related issues including treatment of cancer, Alzheimer’s disease, targeted drug delivery, anti-HIV-1 nanotherapeutics, antibacterial/antiviral agents, skin therapy, and hyperthermia. Features: Consolidates different aspects of nanoparticles such as synthesis and types of nanotherapeutics in a detailed manner. Presents categorical classification of nanoparticles as therapeutics. Covers the sustainability of nanotherapeutics. Reviews fabrication and advancement of all categories of nanotherapeutics. Discusses specific applications such as in cancer therapy, skin treatments, and targeted drug delivery. This book is aimed at researchers, professionals, and senior undergraduate students in materials and medical science, biomedical engineering, and nanotechnology




Functional Nanomaterials for Sensors


Book Description

Because of their novel chemical and physical properties, functional nanomaterials have found increasing industrial applications in nanoelectronics, energy science, and biological applications. Functional Nanomaterials for Sensors surveys advances in functional nanomaterials and their use in sensing. It covers their properties, synthesis, design, fabrication, and their applications, including in chemical, biological, and gas sensing, environmental remediation, fuel cells, catalysis, electronic devices, and biotechnology. FEATURES: • Describes how nanomaterial functionalization is being used to create more effective sensors • Discusses various synthesis procedures, characterization techniques, and which nanomaterials should be used for sensing applications • Provides an in-depth look into oxide nanostructures, carbon nanostructures, and two-dimensional (2D) material fabrication • Explores the challenges of using nanoscale sensors for large-scale industrial applications This book is aimed at materials, chemical, biotech, and electronics researchers and industry professionals working on sensor design and development.




Advanced Functional Metal-Organic Frameworks


Book Description

Due to the structural flexibility, large surface area, tailorable pore size and functional tenability, metal-organic frameworks (MOFs) can lead to materials with unique properties. This book covers the fundamental aspects of MOFs, their synthesis and modification, including their potential applications in different domains. The major focus is on applications including chemical, biosensors, catalysis, drug delivery, supercapacitors, energy storage, magnetics and their future perspectives. The volume: Covers all aspects related to metal-organic frameworks (MOFs), including characterization, modification, applications and associated challenges Illustrates designing and synthetic strategies for MOFs Describes MOFs for gas adsorption, separation and purification, and their role in heterogeneous catalysis Covers sensing of different types of noxious substances in the aqueous environment Includes concepts of molecular magnetism, tunable magnetic properties and future aspects This book is aimed at graduate students, and researchers in material science, coordination and industrial chemistry, chemical and environmental engineering and clean technologies.




Application of Numerical Methods in Engineering Problems using MATLAB®


Book Description

Application of Numerical Methods in Engineering Problems Using MATLAB® presents an analysis of structures using numerical methods and mathematical modeling. This structural analysis also includes beam, plate, and pipe elements, and examines deflection and frequency or buckling loads. The various engineering theories of beams/plates/shells are comprehensively presented, and the relationships between stress and strain, and the governing equations of the structure are extracted. To solve governing equations with numerical methods, there are two general types, including methods based on derivatives or integrals. Derivative-based methods have the advantage of flexibility in modeling boundary conditions, low analysis time, and a very high degree of accuracy. Therefore, the book explains numerical methods based on derivatives, especially the differential quadrature method. Features: Examines the application of numerical methods to obtain the deflection, frequency, and buckling loads. Discusses the application of numerical methods for solving motion equations. Includes numerous practical and applicable examples throughout.




Nanostructured Magnetic Materials


Book Description

Functionalized magnetic nanomaterials are used in data storage, biomedical, environmental, and heterogeneous catalysis applications but there remain developmental challenges to overcome. Nanostructured Magnetic Materials: Functionalization and Diverse Applications covers different synthesis methods for magnetic nanomaterials and their functionalization strategies and highlights recent progress, opportunities, and challenges to utilizing these materials in real-time applications. Reviews recent progress made in the surface functionalization of magnetic nanoparticles Discusses physico-chemical characterization and synthesis techniques Presents the effect of the external magnetic field Details biological, energy, and environmental applications as well as future directions This reference will appeal to researchers, professionals, and advanced students in materials science and engineering and related fields.




Innovations in Green Nanoscience and Nanotechnology


Book Description

This book discusses how greener synthetic pathways are amenable and productive for the synthesis of novel nanomaterials. It furthers the integration of advances in green nanoscience and nanotechnology, including pathways dedicated to the design, development, and fabrication of a range of products and devices. Topics such as green nanotechnology for advanced energy systems, sustainable delivery systems, medicine, agri-nanotechnology for sustainable agriculture, nanotechnology in crop protection, and nanotechnology for soil conservation are included. FEATURES Provides a holistic view of green nanotechnology and its applications Places an emphasis on synthesis, characterization, and applications of green nanomaterials Discusses the development of innovative green synthetic pathways to produce novel biomaterials Includes characterization tools used in the material synthesis via green synthetic pathways Advocates green nanotechnology solutions for sustainability and energy This book is aimed at researchers and professionals in nanotechnology, green chemistry, and chemical engineering.




Novel Electrochemical Energy Storage Devices


Book Description

Novel Electrochemical Energy Storage Devices Explore the latest developments in electrochemical energy storage device technology In Novel Electrochemical Energy Storage Devices, an accomplished team of authors delivers a thorough examination of the latest developments in the electrode and cell configurations of lithium-ion batteries and electrochemical capacitors. Several kinds of newly developed devices are introduced, with information about their theoretical bases, materials, fabrication technologies, design considerations, and implementation presented. You’ll learn about the current challenges facing the industry, future research trends likely to capture the imaginations of researchers and professionals working in industry and academia, and still-available opportunities in this fast-moving area. You’ll discover a wide range of new concepts, materials, and technologies that have been developed over the past few decades to advance the technologies of lithium‐ion batteries, electrochemical capacitors, and intelligent devices. Finally, you’ll find solutions to basic research challenges and the technologies applicable to energy storage industries. Readers will also benefit from the inclusion of: A thorough introduction to energy conversion and storage, and the history and classification of electrochemical energy storage An exploration of materials and fabrication of electrochemical energy storage devices, including categories, EDLCSs, pseudocapacitors, and hybrid capacitors A practical discussion of the theory and characterizations of flexible cells, including their mechanical properties and the limits of conventional architectures A concise treatment of the materials and fabrication technologies involved in the manufacture of flexible cells Perfect for materials scientists, electrochemists, and solid-state chemists, Novel Electrochemical Energy Storage Devices will also earn a place in the libraries of applied physicists, and engineers in power technology and the electrotechnical industry seeking a one-stop reference for portable and smart electrochemical energy storage devices.




Graphene-based Energy Devices


Book Description

This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic fuel cells, with chapters on graphene photovoltaics rounding off the book. Throughout, device architectures are not only discussed on a laboratory scale, but also ways for upscaling to an industrial level, including manufacturing processes and quality control. By bridging academic research and industrial development this is invaluable reading for materials scientists, physical chemists, electrochemists, solid state physicists, and those working in the electrotechnical industry.