Microbial Services in Restoration Ecology


Book Description

Microbial Services in Restoration Ecology describes the role of microbial resources and their beneficial services in soil fertility and restoration of degraded ecosystems. The role of microbial interactions with crop plants which benefit agricultural productivity is also discussed. The book also includes significant advances in microbial based bio-pesticide production and strategies for high-density bio-inoculant cultivation to improve stress survivability of crop plants. This work provides next-generation molecular technologies for exploring complex microbial secondary metabolites and metabolic regulation in viability of plant–microbe interactions. - Describes the role of microbial resources and their beneficial services in soil fertility and restoration of degraded ecosystems - Discusses the role of microbial interactions with crop plants and how it benefits of agricultural productivity - Includes significant advances in microbial based bio-pesticide production and strategies for high-density bio-inoculant cultivation to improve stress survivability of crop plants provides next-generation molecular technologies for exploring complex microbial secondary metabolites and metabolic regulation in viability of plant–microbe interactions




Microbes for Restoration of Degraded Ecosystems


Book Description

Remediation of contaminants caused by growing human civilization and industrialization is a serious environmental issue. Recent research has shown that soil microorganisms play an important role in remediating and improving disturbed ecosystems. This approach is eco-friendly and relatively less expensive. The present book covers the investigations carried out using microbes for restoration of degraded eco-systems. Please note: This volume is Co-published with New India Publishing Agency, New Delhi. Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka




Microbes For Restoration Of Degraded Ecosystems


Book Description

Fast growing human civilization and industrialization have resulted in increased amounts of pollutants such as pesticides, electronic wastes, etc. in the environment. These pollutants have hazardous impacts on living organisms including human health. Remediation of these contaminants is a serious environmental issue of current interest. Recent research has shown that soil microorganisms play an important role in remediating and improving disturbed ecosystems. This approach is eco-friendly and relatively less expensive. The investigations carried out using microbes for restoration of degraded eco-systems is covered in the proposed book.




Microbes in Land Use Change Management


Book Description

Microbes in Land Use Change Management details the various roles of microbial resources in management of land uses and how the microbes can be used for the source of income due to their cultivation for the purpose of biomass and bioenergy production. Using various techniques, the disturbed and marginal lands may also be restored eco-friendly in present era to fulfil the feeding needs of mankind around the globe. Microbes in Land Use Change Management provides standard and up to date information towards the land use change management using various microbial technologies to enhance the productivity of agriculture. Needless to say that Microbes in Land Use Change Management also considers the areas including generation of alternative energy sources, restoration of degraded and marginal lands, mitigation of global warming gases and next generation -omics technique etc. Land use change affects environment conditions and soil microbial community. Microbial population and its species diversity have influence in maintaining ecosystem balance. The study of changes of microbial population provides an idea about the variation occurring in a specific area and possibilities of restoration. Meant for a multidisciplinary audience Microbes in Land Use Change Management shows the need of next-generation omics technologies to explore microbial diversity. - Describes the role of microbes in generation of alternative source of energy - Gives recent information related to various microbial technology and their diversified applications - Provides thorough insight in the problems related to landscape dynamics, restoration of soil, reclamation of lands mitigation of global warming gases etc. eco-friendly way using versatility of microbes - Includes microbial tools and technology in reclamation of degraded, disturbed and marginal lands, mitigation of global warming gases




Soils and Landscape Restoration


Book Description

Soils and Landscape Restoration provides a multidisciplinary synthesis on the sustainable management and restoration of soils in various landscapes. The book presents applicable knowledge of above- and below-ground interactions and biome specific realizations along with in-depth investigations of particular soil degradation pathways. It focuses on severely degraded soils (e.g., eroded, salinized, mined) as well as the restoration of wetlands, grasslands and forests. The book addresses the need to bring together current perspectives on land degradation and restoration in soil science and restoration ecology to better incorporate soil-based information when restoration plans are formulated. - Incudes a chapter on climate change and novel ecosystems, thus collating the perspective of soil scientists and ecologists on this consequential and controversial topic - Connects science to international policy and practice - Includes summaries at the end of each chapter to elucidate principles and key points




Microbes for Restoration of Degraded Ecosystems


Book Description

It is predicted that the world population will reach about 9.7 billion by the year 2050 and to feed this population the food production has to be increased proportionately. Further we are all concerned about climate which in turn results in abiotic stresses like drought, salinity, etc. These abiotic stresses will seriously affect crop productivity. This approach has gained popularity in the recent years and seems to be a potential option for the future. The present book brings out the role of different groups of microorganisms in alleviating abiotic stress in crop plants.




Bacteria in Agrobiology: Crop Ecosystems


Book Description

The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. Bacteria in Agrobiology: Crop Ecosystems describes the beneficial role of plant growth promoting bacteria with special emphasis on oil yielding crops, cereals, fruits and vegetables. Chapters present studies on various aspects of bacteria-plant interactions, soil-borne and seed-borne diseases associated with food crops such as rice, sesame, peanuts, and horticultural crops. Further reviews describe technologies to produce inoculants, the biocontrol of post harvest pathogens as a suitable alternative to agrochemicals, and the restoration of degraded soils.




Soil Biological Communities and Ecosystem Resilience


Book Description

This volume explores current knowledge and methods used to study soil organisms and to attribute their activity to wider ecosystem functions. Biodiversity not only responds to environmental change, but has also been shown to be one of the key drivers of ecosystem function and service delivery. Soil biodiversity in tree-dominated ecosystems is also governed by these principles, the structure of soil biological communities is clearly determined by environmental, as well as spatial, temporal and hierarchical factors. Global environmental change, together with land-use change and ecosystem management by humans, impacts the aboveground structure and composition of tree ecosystems. Due to existing knowledge of the close links between the above- and belowground parts of terrestrial ecosystems, we know that soil biodiversity is also impacted. However, very little is known about the nature of these impacts; effects on the overall level of biodiversity, the magnitude and diversity of functions soil biodiversity generates, but also on the present and future stability of tree ecosystems and soils. Even though much remains to be learned about the relationships between soil biodiversity and tree ecosystem functionality, it is clear that better effort needs to be made to describe and understand key processes which take place in soils and are driven by soil biota.




Linking Restoration and Ecological Succession


Book Description

This innovative book integrates practical information from restoration projects around the world with the latest developments in successional theory. It recognizes the critical roles of disturbance ecology, landscape ecology, ecological assembly, invasion biology, ecosystem health, and historical ecology in habitat restoration. It argues that restoration within a successional context will best utilize the lessons from each of these disciplines.




Ecological Restoration


Book Description

This book consists of fourteen chapters covering important aspects in regards to various terrestrial ecosystems, wetlands, river systems, mine site rehabilitation, marsh ecology and heavy metals pollution. The authors were carefully selected from multiple countries, and this edited book aims to fill some of the information gaps in ecological restoration, particularly in under-researched ecosystems around the world. Our intended readership includes: planners of projects to restore and manage degraded ecosystems; practitioners who implement those plans; resource managers who oversee the sites; land management consultants; environmental authorities; and conservationists and students of natural resource management. We also hope that researchers and the public can find valued information for their future use and efforts. We hope that our work can bring scientists and policy-makers together to envision a sustainable future for ecosystem health and productivity management.