Fertilizer Abstracts


Book Description




Biodiversity, Temperate Ecosystems, and Global Change


Book Description

Reviewed here is the current state of knowledge concerning the relationship between global change and biodiversity of temperate ecosystems. The aim is to improve the ability to conserve biodiversity under conditions of global change. The book focuses on: - The threats posed by global change to biodiversity in temperate ecosystems; - Levels and spatial patterns of diversity in temperate ecosystems; - The impact of global change on genetic diversity; - The effects of disturbance (natural and anthropogenic) on temperate ecosystems; - Existing research priorities and programmes.
















The Microbial Regulation of Global Biogeochemical Cycles


Book Description

Global biogeochemical cycles of carbon and nutrients are increasingly affected by human activities. So far, modeling has been central for our understanding of how this will affect ecosystem functioning and the biogeochemical cycling of carbon and nutrients. These models have been forced to adopt a reductive approach built on the flow of carbon and nutrients between pools that are difficult or even impossible to verify with empirical evidence. Furthermore, while some of these models include the response in physiology, ecology and biogeography of primary producers to environmental change, the microbial part of the ecosystem is generally poorly represented or lacking altogether. The principal pool of carbon and nutrients in soil is the organic matter. The turnover of this reservoir is governed by microorganisms that act as catalytic converters of environmental conditions into biogeochemical cycling of carbon and nutrients. The dependency of this conversion activity on individual environmental conditions such as pH, moisture and temperature has been frequently studied. On the contrary, only rarely have the microorganisms involved in carrying out the processes been identified, and one of the biggest challenges for advancing our understanding of biogeochemical processes is to identify the microorganisms carrying out a specific set of metabolic processes and how they partition their carbon and nutrient use. We also need to identify the factors governing these activities and if they result in feedback mechanisms that alter the growth, activity and interaction between primary producers and microorganisms. By determining how different groups of microorganisms respond to individual environmental conditions by allocating carbon and nutrients to production of biomass, CO2 and other products, a mechanistic as well as quantitative understanding of formation and decomposition of organic matter, and the production and consumption of greenhouse gases, can be achieved. In this Research Topic, supported by the Swedish research councils' programme "Biodiversity and Ecosystem Services in a Changing Landscape" (BECC), we intend to promote this alternative framework to address how cycling of carbon and nutrients will be altered in a changing environment from the first-principle mechanisms that drive them – namely the ecology, physiology and biogeography of microorganisms – and on up to emerging global biogeochemical patterns. This novel and unconventional approach has the potential to generate fresh insights that can open up new horizons and stimulate rapid conceptual development in our basic understanding of the regulating factors for global biogeochemical cycles. The vision for the research topic is to facilitate such progress by bringing together leading scientists as proponents of several disciplines. By bridging Microbial Ecology and Biogeochemistry, connecting microbial activities at the micro-scale to carbon fluxes at the ecosystem-scale, and linking above- and belowground ecosystem functioning, we can leap forward from the current understanding of the global biogeochemical cycles.




Fungi in Ecosystem Processes


Book Description

This new edition of Fungi in Ecosystem Processes continues the unique approach of examining the roles of fungi from the perspective of ecosystem functions. It explores how fungi have adapted to survive within particular constraints, how they help to maintain homeostasis in ecosystems, how they facilitate resistance to perturbations, and how they influence the communities of other organisms. Updated and revised, the second edition Expands the section on plant pathogens, invasive species, and insect–fungal interactions Provides more extensive coverage on insect–fungal interactions, including entomopathogens, the links between entomopathogens and endophytes, and symbiotic and mutualistic interactions Adds a new section on fungi in the built environment Presents new material on below-ground to above-ground interactions mediated through fungi, such as mycorrhizal signaling systems for herbivory defense The book also includes expanded coverage of the role of fungi in suppressive soils, aquatic and marine fungi, modern methods of following food chains in fungal–invertebrate trophic interactions, and the physiology of nutrient uptake by mycorrhizae. A necessary update and expansion to previous material, this book provides an essential reference on the current understanding of fungal roles in ecosystem processes. It also identifies directions for future study, including an emphasis on the need for further research on fungi in built environments.




Forest Soils and Land Use


Book Description