Geomicrobes: Life in Terrestrial Deep Subsurface


Book Description

The deep subsurface is, in addition to space, one of the last unknown frontiers to human kind. A significant part of life on Earth resides in the deep subsurface, hiding great potential of microbial life of which we know only little. The conditions in the deep terrestrial subsurface are thought to resemble those of early Earth, which makes this environment an analog for studying early life in addition to possible extraterrestrial life in ultra-extreme conditions. Early microorganisms played a great role in shaping the conditions on the young Earth. Even today deep subsurface microorganisms interact with their geological environment transforming the conditions in the groundwater and on rock surfaces. Essential elements for life are richly present but in difficultly accessible form. The elements driving the microbial deep life is still not completely identified. Most of the microorganisms detected by novel molecular techniques still lack cultured representatives. Nevertheless, using modern sequencing techniques and bioinformatics the functional roles of these microorganisms are being revealed. We are starting to see the differences and similarities between the life in the deep subsurface and surface domains. We may even begin to see the function of evolution by comparing deep life to life closer to the surface of Earth. Deep life consists of organisms from all known domains of life. This Research Topic reveals some of the rich diversity and functional properties of the great biomass residing in the deep dark subsurface.




Deep Subsurface Microbiology


Book Description

Deep subsurface microbiology is a highly active and rapidly advancing research field at the interface of microbiology and the geosciences; it focuses on the detection, identification, quantification, cultivation and activity measurements of bacteria, archaea and eukaryotes that permeate the subsurface biosphere of deep marine sediments and the basaltic ocean and continental crust. The deep subsurface biosphere abounds with uncultured, only recently discovered and – at best - incompletely understood microbial populations. In spatial extent and volume, Earth's subsurface biosphere is only rivaled by the deep sea water column. So far, no deep subsurface sediment has been found that is entirely devoid of microbial life; microbial cells and DNA remain detectable at sediment depths of more than 1 km; microbial life permeates deeply buried hydrocarbon reservoirs, and is also found several kilometers down in continental crust aquifers. Severe energy limitation, either as electron acceptor or donor shortage, and scarcity of microbially degradable organic carbon sources are among the evolutionary pressures that have shaped the genomic and physiological repertoire of the deep subsurface biosphere. Its biogeochemical role as long-term organic carbon repository, inorganic electron and energy source, and subduction recycling engine continues to be explored by current research at the interface of microbiology, geochemistry and biosphere/geosphere evolution. This Research Topic addresses some of the central research questions about deep subsurface microbiology and biogeochemistry: phylogenetic and physiological microbial diversity in the deep subsurface; microbial activity and survival strategies in severely energy-limited subsurface habitats; microbial activity as reflected in process rates and gene expression patterns; biogeographic isolation and connectivity in deep subsurface microbial communities; the ecological standing of subsurface biospheres in comparison to the surface biosphere – an independently flourishing biosphere, or mere survivors that tolerate burial (along with organic carbon compounds), or a combination of both? Advancing these questions on Earth’s deep subsurface biosphere redefines the habitat range, environmental tolerance, activity and diversity of microbial life.




Extreme Environments


Book Description

"The book will focus on the microbial diversity specifically associated to the extreme environments. Following are the areas we are planning to cover in the book. Overview of microbial diversity associated to extreme environments such as a) Extremophilic microbial diversity covering environments like hot springs, soda lakes, acidic environment, glaciers and oceans etc., b) Functional Microbial Diversity especially on processes like nitrogen and carbon cycling etc., c) Molecular tools in microbial diversity. Whole genome sequencing and metagenomic approaches to study microbial diversity. Future directions of microbial Diversity, mutli-omics approaches"--




The Chemistry of Microbiomes


Book Description

The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.




The Deep Hot Biosphere


Book Description

This book sets forth a set of truly controversial and astonishing theories: First, it proposes that below the surface of the earth is a biosphere of greater mass and volume than the biosphere the total sum of living things on our planet's continents and in its oceans. Second, it proposes that the inhabitants of this subterranean biosphere are not plants or animals as we know them, but heat-loving bacteria that survive on a diet consisting solely of hydrocarbons that is, natural gas and petroleum. And third and perhaps most heretically, the book advances the stunning idea that most hydrocarbons on Earth are not the byproduct of biological debris ("fossil fuels"), but were a common constituent of the materials from which the earth itself was formed some 4.5 billion years ago. The implications are astounding. The theory proposes answers to often-asked questions: Is the deep hot biosphere where life originated, and do Mars and other seemingly barren planets contain deep biospheres? Even more provocatively, is it possible that there is an enormous store of hydrocarbons upwelling from deep within the earth that can provide us with abundant supplies of gas and petroleum? However far-fetched these ideas seem, they are supported by a growing body of evidence, and by the indisputable stature and seriousness Gold brings to any scientific debate. In this book we see a brilliant and boldly original thinker, increasingly a rarity in modern science, as he develops potentially revolutionary ideas about how our world works.




Carbon in Earth's Interior


Book Description

Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.




Microbial Life of the Deep Biosphere


Book Description

Over the last two decades, exploration of the deep subsurface biosphere has developed into a major research area. New findings constantly challenge our concepts of global biogeochemical cycles and the ultimate limits to life. In order to explain our observations from deep subsurface ecosystems it is necessary to develop truly interdisciplinary approaches, ranging from microbiology and geochemistry to physics and modeling. This book aims to bring together a wide variety of topics, covering the broad range of issues that are associated with deep biosphere exploration. Not only does the book present case studies of selected projects, but also treats questions arising from our current knowledge. Despite nearly two decades of research, there are still many boundaries to exploration caused by technical limitations and one section of the book is devoted to these technical challenges and the latest developments in this field. This volume will be of high interest to biologists, chemists and earth scientists all working on the deep biosphere.




Extremophiles as Astrobiological Models


Book Description

The data in this book are new or updated, and will serve also as Origin of Life and evolutionary studies. Endospores of bacteria have a long history of use as model organisms in astrobiology, including survival in extreme environments and interplanetary transfer of life. Numerous other bacteria as well as archaea, lichens, fungi, algae and tiny animals (tardigrades, or water bears) are now being investigated for their tolerance to extreme conditions in simulated or real space environments. Experimental results from exposure studies on the International Space Station and space probes for up to 1.5 years are presented and discussed. Suggestions for extaterrestrial energy sources are also indicated. Audience Researchers and graduate students in microbiology, biochemistry, molecular biology and astrobiology, as well as anyone interested in the search for extraterrestrial life and its technical preparations.




The Social Biology of Microbial Communities


Book Description

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.




Modern Soil Microbiology, Second Edition


Book Description

In the ten years since the publication of Modern Soil Microbiology, the study of soil microbiology has significantly changed, both in the understanding of the diversity and function of soil microbial communities and in research methods. Ideal for students in a variety of disciplines, this second edition provides a cutting-edge examination of a fascinating discipline that encompasses ecology, physiology, genetics, molecular biology, and biotechnology, and makes use of biochemical and biophysical approaches. The chapters cover topics ranging from the fundamental to the applied and describe the use of advanced methods that have provided a great thrust to the discipline of soil microbiology. Using the latest molecular analyses, they integrate principles of soil microbiology with novel insights into the physiology of soil microorganisms. The authors discuss the soil and rhizosphere as habitats for microorganisms, then go on to describe the different microbial groups, their adaptive responses, and their respective processes in interactive and functional terms. The book highlights a range of applied aspects of soil microbiology, including the nature of disease-suppressive soils, the use of biological control agents, biopesticides and bioremediation agents, and the need for correct statistics and experimentation in the analyses of the data obtained from soil systems.