Microbial Responses to Environmental Change in Canada's High Arctic


Book Description

The Arctic is undergoing a rapid environmental shift with increasing temperatures and precipitations expected to continue over the next century. Yet, little is known about how microbial communities and their underlying metabolic processes will respond to ongoing climatic changes. To address this question, we focused on Lake Hazen, NU, Canada. As the largest High Arctic lake by volume, it is a unique site to investigate microbial responses to environmental changes. Over the past decade, glacial coverage of the lake has declined. Increasing glacial runoff and sedimentation rates in the lake has resulted in differential influx of nutrients through spatial gradients. I used these spatial gradients to study how environmental changes might affect microbial community structure and functional capacity in Arctic lakes. I performed a metagenomic analysis of microbial communities from hydrological regimes representing high, low, and negligible influence of glacial runoff and compared the observed structure and function to the natural geochemical gradients. Genes and reconstructed genomes found in different abundances across these sites suggest that high-runoff regimes alter geochemical gradients, homogenise the microbial structure, and reduce genetic diversity. This work shows how a genome-centric metagenomics approach can be used to predict future microbial responses to a changing climate.







Microbial Responses to Environmental Changes


Book Description

Advances in next generation sequencing technologies, omics, and bioinformatics are revealing a tremendous and unsuspected diversity of microbes, both at a compositional and functional level. Moreover, the expansion of ecological concepts into microbial ecology has greatly advanced our comprehension of the role microbes play in the functioning of ecosystems across a wide range of biomes. Super-imposed on this new information about microbes, their functions and how they are organized, environmental gradients are changing rapidly, largely driven by direct and indirect human activities. In the context of global change, understanding the mechanisms that shape microbial communities is pivotal to predict microbial responses to novel selective forces and their implications at the local as well as global scale. One of the main features of microbial communities is their ability to react to changes in the environment. Thus, many studies have reported changes in the performance and composition of communities along environmental gradients. However, the mechanisms underlying these responses remain unclear. It is assumed that the response of microbes to changes in the environment is mediated by a complex combination of shifts in the physiological properties, single-cell activities, or composition of communities: it may occur by means of physiological adjustments of the taxa present in a community or selecting towards more tolerant/better adapted phylotypes. Knowing whether certain factors trigger one, many, or all mechanisms would greatly increase confidence in predictions of future microbial composition and processes. This Research Topic brings together studies that applied the latest molecular techniques for studying microbial composition and functioning and integrated ecological, biogeochemical and/or modeling approaches to provide a comprehensive and mechanistic perspective of the responses of micro-organisms to environmental changes. This Research Topic presents new findings on environmental parameters influencing microbial communities, the type and magnitude of response and differences in the response among microbial groups, and which collectively deepen our current understanding and knowledge of the underlying mechanisms of microbial structural and functional responses to environmental changes and gradients in both aquatic and terrestrial ecosystems. The body of work has, furthermore, identified many challenges and questions that yet remain to be addressed and new perspectives to follow up on.







Understanding and Responding to Global Health Security Risks from Microbial Threats in the Arctic


Book Description

The National Academies of Sciences, Engineering, and Medicine in collaboration with the InterAcademy Partnership and the European Academies Science Advisory Committee held a workshop in November 2019 to bring together researchers and public health officials from different countries and across several relevant disciplines to explore what is known, and what critical knowledge gaps remain, regarding existing and possible future risks of harmful infectious agents emerging from thawing permafrost and melting ice in the Arctic region. The workshop examined case studies such as the specific case of Arctic region anthrax outbreaks, as a known, observed risk as well as other types of human and animal microbial health risks that have been discovered in snow, ice, or permafrost environments, or that could conceivably exist. The workshop primarily addressed two sources of emerging infectious diseases in the arctic: (1) new diseases likely to emerge in the Arctic as a result of climate change (such as vector-borne diseases) and (2) ancient and endemic diseases likely to emerge in the Arctic specifically as a result of permafrost thaw. Participants also considered key research that could advance knowledge including critical tools for improving observations, and surveillance to advance understanding of these risks, and to facilitate and implement effective early warning systems. Lessons learned from efforts to address emerging or re-emerging microbial threats elsewhere in the world were also discussed. This publication summarizes the presentation and discussion of the workshop.




Arctic Climate Impact Assessment - Scientific Report


Book Description

The Arctic is now experiencing some of the most rapid and severe climate change on earth. Over the next 100 years, climate change is expected to accelerate, contributing to major physical, ecological, social, and economic changes, many of which have already begun. Changes in arctic climate will also affect the rest of the world through increased global warming and rising sea levels. Arctic Climate Impact Assessment was prepared by an international team of over 300 scientists, experts, and knowledgeable members of indigenous communities. The report has been thoroughly researched, is fully referenced, and provides the first comprehensive evaluation of arctic climate change, changes in ultraviolet radiation and their impacts for the region and for the world. It is illustrated in full color throughout. The results provided the scientific foundations for the ACIA synthesis report - Impacts of a Warming Arctic - published by Cambridge University Press in 2004.




Psychrophiles: From Biodiversity to Biotechnology


Book Description

Cold adaptation includes a complex range of structural and functional adaptations at the level of all cellular constituents, and these adaptations render cold-adapted organisms particularly useful for biotechnological applications. This book presents the most recent knowledge of (i) boundary conditions for microbial life in the cold, (ii) microbial diversity in various cold ecosystems, (iii) molecular cold adaptation mechanisms and (iv) the resulting biotechnological perspectives.







Bulletin


Book Description




Arctic and Environmental Change


Book Description

This timely book presents a wide-ranging review of Arctic environmental change in response to global warming, and gives a broad insight into the transformation of the Arctic which we can expect during the next century. It is in high northern latitudes that we can expect to observe global warming at its most powerful, making it a natural laboratory where climate changes and their impacts can be monitored and studied more readily than elsewhere in the world. Fourteen authoritative reviews cover the predictions of warming rates by General Circulation Models; variabilities in atmospheric circulation and moisture flux; the dynamics of the polar vortex in the Arctic and its role in ozone loss; the countervailing influence of air pollution in reducing solar irradiance; and the impact of climatic change on Arctic terrestrial and marine ecosystems. Also detailed are the thermohaline circulation of the ocean, the extent and thickness of sea ice, the sizes of glaciers and ice sheets, and the extent of permafrost. Moving to past changes, the records from Greenland ice cores and deep ocean drilling are reviewed for what they tell us about past climates and glaciation in the Arctic., The book paints a vivid and disturbing picture of the enhanced warming that can be expected in the Arctic relative to lower latitudes, and of the major impacts that this will have on the northern cryosphere. It will be an invaluable reference for anyone seeking a greater understanding of the factors and processes affecting the arctic environment, which may ultimately have a major impact on global climatic change.