Microbiology of Atypical Environments


Book Description

Microbiology of Atypical Environments, Volume 45, presents a comprehensive reference text on the microbiological methods used to research the basic biology of microorganism in harsh, stressful and sometimes atypical environments (e.g. arctic ice, space stations, extraterrestrial environments, hot springs and magnetic environments). Chapters in this release include Biofilms in space, Methods for studying the survival of microorganisms in extraterrestrial environments, Persistence of Fungi in Atypical (Closed) Environments Based on Evidence from the International Space Station (ISS): Distribution and Significance to Human health, Methods for visualizing microorganisms in Icy environments, Measuring microbial metabolism at surface-air interfaces and nuclear waste management, amongst others. - Contains both established and emerging methods - Provides excellent reference lists on the topics covered




Methods in Microbiology


Book Description

The book Methods in Silkworm Microbiology is the first ever publication that provides in-depth reviews on the latest progresses about silkworm –pathogen interactions, diseases and management practices for sustainable development of sericulture. Different molecular and immunodiagnostic methods for the detection of pathogens have been comprehensively addressed. Most recent advancements on the role of Micro RNAs in silkworm and pathogen interactions are provided with suitable illustrations. Recent technological advances and emerging trends in exploring silkworm gut microbial communities towards translation research, particularly to understand microbiome functions have been highlighted. Information on various immune mechanisms of silkworm against invading pathogens is summarized. The book further highlights the silkworm gut microbiota as a potential source for biotechnological applications. - Provide comprehensive reviews and valuable methods from the selected experts on the topic "Methods in silkworm microbiology/pathology" - Provides latest information on application of genomics and transcriptomics to decipher silkworm gut microbial communities. Different molecular and immunodiagnostic methods for the detection of pathogens have been comprehensively addressed - Provides up to date information on silkworm-pathogen interactions, different silkworm diseases and immune mechanisms




Omics for Environmental Engineering and Microbiology Systems


Book Description

Bioremediation using microbes is a sustainable technology for biodegradation of target compounds, and an omics approach gives more clarity on these microbial communities. This book provides insights into the complex behavior of microbial communities and identifies enzymes/metabolites and their degradation pathways. It describes the application of microbes and their derivatives for the bioremediation of potentially toxic and novel compounds. It highlights the existing technologies along with industrial practices and real-life case studies. Features: Includes recent research and development in the areas of omics and microbial bioremediation. Covers the broad environmental pollution control approaches such as metagenomics, metabolomics, fluxomics, bioremediation, and biodegradation of industrial wastes. Reviews metagenomics and waste management, and recycling for environmental cleanup. Describes the metagenomic methodologies and best practices, from sample collection to data analysis for taxonomies. Explores various microbial degradation pathways and detoxification mechanisms for organic and inorganic contaminants of wastewater with their gene expression. This book is aimed at graduate students and researchers in environmental engineering, soil remediation, hazardous waste management, environmental modeling, and wastewater treatment.




Manual of Environmental Microbiology


Book Description

The single most comprehensive resource for environmental microbiology Environmental microbiology, the study of the roles that microbes play in all planetary environments, is one of the most important areas of scientific research. The Manual of Environmental Microbiology, Fourth Edition, provides comprehensive coverage of this critical and growing field. Thoroughly updated and revised, the Manual is the definitive reference for information on microbes in air, water, and soil and their impact on human health and welfare. Written in accessible, clear prose, the manual covers four broad areas: general methodologies, environmental public health microbiology, microbial ecology, and biodegradation and biotransformation. This wealth of information is divided into 18 sections each containing chapters written by acknowledged topical experts from the international community. Specifically, this new edition of the Manual Contains completely new sections covering microbial risk assessment, quality control, and microbial source tracking Incorporates a summary of the latest methodologies used to study microorganisms in various environments Synthesizes the latest information on the assessment of microbial presence and microbial activity in natural and artificial environments The Manual of Environmental Microbiology is an essential reference for environmental microbiologists, microbial ecologists, and environmental engineers, as well as those interested in human diseases, water and wastewater treatment, and biotechnology.




Microbial Community Studies in Industrial Wastewater Treatment


Book Description

Focusing on microbial community structure in the field of wastewater treatment, this book highlights structural analyses in relation to changes in physico-chemical parameters. It further covers physiological analyses of microbial communities, enrichment of pure cultures of key species in relation to changes in physico-chemical parameters, and analyses and modelling of consequences of changes in microbial community structure. Based on 16S rRNA gene sequencing, groups of bacteria that perform nitrogen fixation, nitrification, ammonification and other biochemical processes are covered for an entire wastewater treatment plant bioreactor along with temporal dynamics of bacterial communities. Features: Describes the state-of-the-art techniques and the application of omics tools in wastewater treatment reactors (WWTRs). Includes both the theoretical and practical knowledge on the fundamental roles of microorganisms in WWTRs. Discusses environmental microbial community proteomics. Covers relating function and community structure of complex microbial systems using neural networks. Reviews the economics of wastewater treatment and the development of suitable alternatives in terms of performance and cost-effectiveness. This book is aimed at graduates and researchers in biological engineering, biochemical engineering, chemistry, environmental engineering, environmental microbiology, systems ecology and environmental biotechnology.




Microbiomes of the Built Environment


Book Description

People's desire to understand the environments in which they live is a natural one. People spend most of their time in spaces and structures designed, built, and managed by humans, and it is estimated that people in developed countries now spend 90 percent of their lives indoors. As people move from homes to workplaces, traveling in cars and on transit systems, microorganisms are continually with and around them. The human-associated microbes that are shed, along with the human behaviors that affect their transport and removal, make significant contributions to the diversity of the indoor microbiome. The characteristics of "healthy" indoor environments cannot yet be defined, nor do microbial, clinical, and building researchers yet understand how to modify features of indoor environmentsâ€"such as building ventilation systems and the chemistry of building materialsâ€"in ways that would have predictable impacts on microbial communities to promote health and prevent disease. The factors that affect the environments within buildings, the ways in which building characteristics influence the composition and function of indoor microbial communities, and the ways in which these microbial communities relate to human health and well-being are extraordinarily complex and can be explored only as a dynamic, interconnected ecosystem by engaging the fields of microbial biology and ecology, chemistry, building science, and human physiology. This report reviews what is known about the intersection of these disciplines, and how new tools may facilitate advances in understanding the ecosystem of built environments, indoor microbiomes, and effects on human health and well-being. It offers a research agenda to generate the information needed so that stakeholders with an interest in understanding the impacts of built environments will be able to make more informed decisions.




Fungi in Extreme Environments: Ecological Role and Biotechnological Significance


Book Description

Over the last decades, scientists have been intrigued by the fascinating organisms that inhabit extreme environments. These organisms, known as extremophiles, thrive in habitats which for other terrestrial life-forms are intolerably hostile or even lethal. Based on such technological advances, the study of extremophiles has provided, over the last few years, ground-breaking discoveries that challenge the paradigms of modern biology. In the new bioeconomy, fungi in general, play a very important role in addressing major global challenges, being instrumental for improved resource efficiency, making renewable substitutes for products from fossil resources, upgrading waste streams to valuable food and feed ingredients, counteracting life-style diseases and antibiotic resistance through strengthening the gut biota, making crop plants more robust to survive climate change conditions, and functioning as host organisms for production of new biological drugs. This range of new uses of fungi all stand on the shoulders of the efforts of mycologists over generations. The book is organized in five parts: (I) Biodiversity, Ecology, Genetics and Physiology of Extremophilic Fungi, (II) Biosynthesis of Novel Biomolecules and Extremozymes (III) Bioenergy and Biofuel synthesis, and (IV) Wastewater and biosolids treatment, and (V) Bioremediation.




Manual of Environmental Microbiology


Book Description

The most definitive manual of microbes in air, water, and soil and their impact on human health and welfare. • Incorporates a summary of the latest methodology used to study the activity and fate of microorganisms in various environments. • Synthesizes the latest information on the assessment of microbial presence and microbial activity in natural and artificial environments. • Features a section on biotransformation and biodegradation. • Serves as an indispensable reference for environmental microbiologists, microbial ecologists, and environmental engineers, as well as those interested in human diseases, water and wastewater treatment, and biotechnology.




Artificial Intelligence in Microbiology: Scope and Challenges Volume 1


Book Description

Nowadays, the field of microbiology is undergoing a revolutionary change due to the emergence of Artificial Intelligence (AI). AI is being used to analyze massive data in a predictable form, about the behavior of microorganisms, to solve microbial classification-related problems, exploring the interaction between microorganisms and the surrounding environment. It also helps to extract novel microbial metabolites which have been used in various fields like medical, food and agricultural industries. As the pace of innovation in Microbiology is accelerating, the use of AI in these industries will be beneficial. AI will not only show its extraordinary potential in expanding the market of antibiotics, food, and agriculture but also offer an eco-friendly, safer, and profitable solution to the respective industries. It would be challenging to search out specific features and discuss future research on AI in microbiology with a wide perspective. - Uncovering extended functions of AI in Microbiology. - Production and development of novel drug targets through AI. - Challenges for using and selecting appropriate AI tools in health, agriculture and food sector




Immunological Methods in Microbiology


Book Description

Immunological Methods in Microbiology, Volume 47 in the Methods in Microbiology series, highlights new advances in the field, with this new volume presenting interesting chapters on Immunological Techniques in the Clinical laboratory, Immunologic Diagnosis of HIV and Opportunistic Infections, Combining Antigen Detection and Serology for the Diagnosis of Selected Infectious Diseases, Immunologic Detection of Lyme Disease and Related Borrelioses, Immunodetection of Bacteria Causing Brucellosis, Immunological Diagnostic Techniques Used to Identify and Type Pasteurella, Immunological Tests for Diarrhea caused by Diarrheagenic Escherichia coli Targeting Their Main Virulence Factors, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Microbiology series - Includes the latest information on Immunological Methods in Microbiology