Microelectronics, I.


Book Description




Materials Science in Microelectronics I


Book Description

Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship – that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer – determines the ultimate structure of the thin film, and thus its properties. This volume takes into consideration the following potential influencing factors: crystal defects, void structure, grain structure, interface structure in epitaxial films, the structure of amorphous films, and reaction-induced structure.An ideal text or reference work for students and researchers in material science, who need to learn the basics of thin films.




MICROELECTRONICS


Book Description




Microelectronics


Book Description

By helping students develop an intuitive understanding of the subject, Microelectronics teaches them to think like engineers. The second edition of Razavi’s Microelectronics retains its hallmark emphasis on analysis by inspection and building students’ design intuition, and it incorporates a host of new pedagogical features that make it easier to teach and learn from, including: application sidebars, self-check problems with answers, simulation problems with SPICE and MULTISIM, and an expanded problem set that is organized by degree of difficulty and more clearly associated with specific chapter sections.




Microelectronic Interconnections and Assembly


Book Description

MICROELECTRONIC INTERCONNECTIONS AND MICROASSEMBL Y WORKSHOP 18-21 May 1996, Prague, Czech Republic Conference Organizers: George Harman, NIST (USA) and Pavel Mach (Czech Republic) Summary of the Technical Program Thirty two presentations were given in eight technical sessions at the Workshop. A list of these sessions and their chairpersons is attached below. The Workshop was devoted to the technical aspects of advanced interconnections and microassembly, but also included papers on the education issues required to prepare students to work in these areas. In addition to new technical developments, several papers presented overviews predicting the future directions of these technologies. The basic issue is that electronic systems will continue to be miniaturized and at the same time performance must continue to improve. Various industry roadmaps were discussed as well as new smaller packaging and interconnection concepts. The newest chip packages are often based on the selection of an appropriate interconnection method. An example is the chip-scale package, which has horizontal (x-y) dimensions,;; 20% larger than the actual silicon chip itself. The chip is often flip-chip connected to a micro ball-grid-array, but direct chip attach was described also. Several papers described advances in the manufacture of such packages.




Women in Microelectronics


Book Description

This book contains stories of women engineers’ paths through the golden age of microelectronics, stemming from the invention of the transistor in 1947. These stories, like the biographies of Marie Curie and the National Geographic’s stories of Jane Goodall’s research that inspired the authors will inspire and guide readers along unconventional pathways to contributions to microelectronics that we can only begin to imagine. The book explores why and how the women writing here chose their career paths and how they navigated their careers. This topic is of interest to a vast audience, from students to professionals to university advisers to industry CEOs, who can imagine the advantages of a future with a diverse work force. Provides insight into women’s early contributions to the field of microelectronics and celebrates the challenges they overcame; Presents compelling innovations from academia, research, and industry into advances, applications, and the future of microelectronics; Includes a fascinating look into topics such as nanotechnologies, video games, analog electronics, design automation, and neuromorphic circuits.




Microelectronics


Book Description

When it comes to electronics, demand grows as technology shrinks. From consumer and industrial markets to military and aerospace applications, the call is for more functionality in smaller and smaller devices. Culled from the second edition of the best-selling Electronics Handbook, Microelectronics, Second Edition presents a summary of the current state of microelectronics and its innovative directions. This book focuses on the materials, devices, and applications of microelectronics technology. It details the IC design process and VLSI circuits, including gate arrays, programmable logic devices and arrays, parasitic capacitance, and transmission line delays. Coverage ranges from thermal properties and semiconductor materials to MOSFETs, digital logic families, memory devices, microprocessors, digital-to-analog and analog-to-digital converters, digital filters, and multichip module technology. Expert contributors discuss applications in machine vision, ad hoc networks, printing technologies, and data and optical storage systems. The book also includes defining terms, references, and suggestions for further reading. This edition features two new sections on fundamental properties and semiconductor devices. With updated material and references in every chapter, Microelectronics, Second Edition is an essential reference for work with microelectronics, electronics, circuits, systems, semiconductors, logic design, and microprocessors.




Understanding Microelectronics


Book Description

The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach. For today’s students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions, signals and their properties. Here he presents a helpful balance of theory, examples, and verification of results, while keeping mathematics and signal processing theory to a minimum. Key features: Presents a new learning approach that will greatly improve students’ ability to retain key concepts in electronics studies Match the evolution of Computer Aided Design (CAD) which focuses increasingly on high-level design Covers sub-functions as well as basic circuits and basic components Provides real-world examples to inspire a thorough understanding of global issues, before going into the detail of components and devices Discusses power conversion and management; an important area that is missing in other books on the subject End-of-chapter problems and self-training sections support the reader in exploring systems and understanding them at increasing levels of complexity Inside this book you will find a complete explanation of electronics that can be applied across a range of disciplines including electrical engineering and physics. This comprehensive introduction will be of benefit to students studying electronics, as well as their lecturers and professors. Postgraduate engineers, those in vocational training, and design and application engineers will also find this book useful.




Nanotechnology for Microelectronics and Photonics


Book Description

Nanotechnology for Microelectronics and Photonics, Second Edition has been thoroughly revised, expanded, and updated. The aim of the book is to present the most recent advances in the field of nanomaterials, as well as the devices being developed for novel nanoelectronics and nanophotonic systems. It covers the many novel nanoscale applications in microelectronics and photonics that have been developed in recent years. Looking to the future, the book suggests what other applications are currently in development and may become feasible within the next few decades based on novel materials such as graphene, nanotubes, and organic semiconductors. In addition, the inclusion of new chapters and new sections to keep up with the latest developments in this rapidly-evolving field makes Nanotechnology for Microelectronics and Photonics, Second Edition an invaluable reference to research and industrial scientists looking for a guide on how nanostructured materials and nanoscale devices are used in microelectronics, optoelectronics, and photonics today and in future developments. - Presents the fundamental scientific principles that explain the novel properties and applications of nanostructured materials in the quantum frontier - Offers clear and concise coverage of how nanotechnology is currently used in the areas of microelectronics, optoelectronics, and photonics, as well as future proposed devices - Includes nearly a hundred problems along with helpful hints and full solutions for more than half of them




RF and Microwave Microelectronics Packaging


Book Description

RF and Microwave Microelectronics Packaging presents the latest developments in packaging for high-frequency electronics. It will appeal to practicing engineers in the electronic packaging and high-frequency electronics fields and to academic researchers interested in understanding leading issues in the commercial sector. It covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods as well as other RF/MW packaging-related fields.