Semiconductor Process Reliability in Practice


Book Description

Proven processes for ensuring semiconductor device reliability Co-written by experts in the field, Semiconductor Process Reliability in Practice contains detailed descriptions and analyses of reliability and qualification for semiconductor device manufacturing and discusses the underlying physics and theory. The book covers initial specification definition, test structure design, analysis of test structure data, and final qualification of the process. Real-world examples of test structure designs to qualify front-end-of-line devices and back-end-of-line interconnects are provided in this practical, comprehensive guide. Coverage includes: Basic device physics Process flow for MOS manufacturing Measurements useful for device reliability characterization Hot carrier injection Gate-oxide integrity (GOI) and time-dependent dielectric breakdown (TDDB) Negative bias temperature instability Plasma-induced damage Electrostatic discharge protection of integrated circuits Electromigration Stress migration Intermetal dielectric breakdown




Microelectronics Manufacturing Diagnostics Handbook


Book Description

The world of microelectronics is filled with cusses measurement systems, manufacturing many success stories. From the use of semi control techniques, test, diagnostics, and fail ure analysis. It discusses methods for modeling conductors for powerful desktop computers to their use in maintaining optimum engine per and reducing defects, and for preventing de formance in modem automobiles, they have fects in the first place. The approach described, clearly improved our daily lives. The broad while geared to the microelectronics world, has useability of the technology is enabled, how applicability to any manufacturing process of similar complexity. The authors comprise some ever, only by the progress made in reducing their cost and improving their reliability. De of the best scientific minds in the world, and fect reduction receives a significant focus in our are practitioners of the art. The information modem manufacturing world, and high-quality captured here is world class. I know you will diagnostics is the key step in that process. find the material to be an excellent reference in of product failures enables step func Analysis your application. tion improvements in yield and reliability. which works to reduce cost and open up new Dr. Paul R. Low applications and technologies. IBM Vice President and This book describes the process ofdefect re of Technology Products General Manager duction in the microelectronics world.




Semiconductor Packaging


Book Description

In semiconductor manufacturing, understanding how various materials behave and interact is critical to making a reliable and robust semiconductor package. Semiconductor Packaging: Materials Interaction and Reliability provides a fundamental understanding of the underlying physical properties of the materials used in a semiconductor package. By tying together the disparate elements essential to a semiconductor package, the authors show how all the parts fit and work together to provide durable protection for the integrated circuit chip within as well as a means for the chip to communicate with the outside world. The text also covers packaging materials for MEMS, solar technology, and LEDs and explores future trends in semiconductor packages.




Design for Excellence in Electronics Manufacturing


Book Description

An authoritative guide to optimizing design for manufacturability and reliability from a team of experts Design for Excellence in Electronics Manufacturing is a comprehensive, state-of-the-art book that covers design and reliability of electronics. The authors—noted experts on the topic—explain how using the DfX concepts of design for reliability, design for manufacturability, design for environment, design for testability, and more, reduce research and development costs and decrease time to market and allow companies to confidently issue warranty coverage. By employing the concepts outlined in Design for Excellence in Electronics Manufacturing, engineers and managers can increase customer satisfaction, market share, and long-term profits. In addition, the authors describe the best practices regarding product design and show how the practices can be adapted for different manufacturing processes, suppliers, use environments, and reliability expectations. This important book: Contains a comprehensive review of the design and reliability of electronics Covers a range of topics: establishing a reliability program, design for the use environment, design for manufacturability, and more Includes technical information on electronic packaging, discrete components, and assembly processes Shows how aspects of electronics can fail under different environmental stresses Written for reliability engineers, electronics engineers, design engineers, component engineers, and others, Design for Excellence in Electronics Manufacturing is a comprehensive book that reveals how to get product design right the first time.







Reliability And Radiation Effects In Compound Semiconductors


Book Description

This book focuses on reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. It starts with first principles, and shows how advances in device design and manufacturing have suppressed many of the older reliability mechanisms.It is the first book that comprehensively covers reliability and radiation effects in optoelectronic as well as microelectronic devices. It contrasts reliability mechanisms of compound semiconductors with those of silicon-based devices, and shows that the reliability of many compound semiconductors has improved to the level where they can be used for ten years or more with low failure rates.




Reliability and Failure of Electronic Materials and Devices


Book Description

Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites




Springer Handbook of Engineering Statistics


Book Description

In today’s global and highly competitive environment, continuous improvement in the processes and products of any field of engineering is essential for survival. This book gathers together the full range of statistical techniques required by engineers from all fields. It will assist them to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved. The handbook will be essential reading for all engineers and engineering-connected managers who are serious about keeping their methods and products at the cutting edge of quality and competitiveness.