Microsystems and Nanotechnology


Book Description

“Microsystems and Nanotechnology” presents the latest science and engineering research and achievements in the fields of microsystems and nanotechnology, bringing together contributions by authoritative experts from the United States, Germany, Great Britain, Japan and China to discuss the latest advances in microelectromechanical systems (MEMS) technology and micro/nanotechnology. The book is divided into five parts – the fundamentals of microsystems and nanotechnology, microsystems technology, nanotechnology, application issues, and the developments and prospects – and is a valuable reference for students, teachers and engineers working with the involved technologies. Professor Zhaoying Zhou is a professor at the Department of Precision Instruments & Mechanology , Tsinghua University , and the Chairman of the MEMS & NEMS Society of China. Dr. Zhonglin Wang is the Director of the Center for Nanostructure Characterization, Georgia Tech, USA. Dr. Liwei Lin is a Professor at the Department of Mechanical Engineering, University of California at Berkeley, USA.




Microelectronics, Microsystems and Nanotechnology


Book Description

This volume contains papers on the following: CMOS devices and devices based on compound semiconductors; processing; silicon integrated technology and integrated circuit design; quantum physics; nanotechnology; nanodevices, sensors and microsystems. The latest news and future challenges in these fields are presented in invited papers. Contents: Nanotechnology and Quantum Devices: A New Strategy for In Situ Synthesis of Oligonucleotides Arrays for DNA Chip Technology (F Vinet et al.); Magnetotransport Properties of La-Ca-Mn-O Multilayers (C Christides); Charge Effects and Related Transport Phenomena in Nanosize Silicon/Insulator Structures (J A Berashevich et al.); Thermoelectric Properties of Composite Fermions (M Tsaousidou & G P Triberis); Design and Fabrication of Supported-Metal Catalysts Through Nanotechnology (I Zuburtikudis); Ground State Electronic Structure of Small Si Quantum Dots (C S Garoufalis et al.); Processing: Solid Interface Studies with Applications in Microelectronics (S Kennou et al.); Rapid Thermal Annealing of Arsenic Implanted Silicon for the Formation of Ultra Shallow n+p Junctions (N Georgoulas et al.); Simulation of the Formation and Characterization of Roughness in Photoresists (G P Patsis et al.); Development of a New Low Energy Electron Beam Lithography Simulation Tool (D Velessiotis et al.); CMOS Devices and Devices Based on Compound Semiconductors: Microhardness Characterization of Epitaxially Grown GaN Films. Effect of Light Ion Implantation (P Kavouras et al.); Multiple Quantum Well Solar Cells Under AM1 and Concentrated Sunlight (E Aperathitis et al.); The Influence of Silicon Interstitial Clustering on the Reverse Short Channel Effect (C Tsamis & D Tsoukalas); Noise Modeling of Interdigitated Gate CMOS Devices (E F Tsakas & A N Birbas); High Precision CMOS Euclidean Distance Computing Circuit (G Fikos & S Siskos); Microsystems: Alternative Signal Extraction Technique for Miniature Fluxgates (P D Dimitropoulos & J N Avaritsiotis); Silicon Capacitive Pressure Sensors and Pressure Switches Fabricated Using Silicon Fusion Bonding (S Koliopoulou et al.); Microsystems for Acoustical Signal Detection Applications (D K Fragoulis & J N Avaritsiotis); Capillary Format Bioanalytical Microsystems (K Misiakos et al.); Effectiveness of Local Thermal Isolation by Porous Silicon in a Silicon Thermal Sensor (D Pagonis et al.); Silicon Integrated Technology and Integrated Circuit Design: MOSFET Model Benchmarking Using a Novel CAD Tool (N A Nastos & Y Papananos); Power Amplifier Linearisation Techniques: An Overview (N Naskas & Y Papananos); The Design of a Ripple Carry Adiabatic Adder (V Pavlidis et al.); Maximum Power Estimation in CMOS VLSI Circuits (N E Evmorfopoulos et al.); Power Dissipation Considerations in Low-Voltage CMOS Circuits (A A Hatzopoulos); Microelectronics Networks/Technology Transfer and Exploitation: EURACCESS: A European Platform for Access to CMOS Processing (C L Claeys); MMN: Greek Network on Microelectronics, Microsystems and Nanotechnology (A G Nassiopoulou); Simulations of Molecular Electronics (S T Pantelides et al.); and other papers. Readership: Researchers, academics, industrialists and undergraduates in microelectronics, nanoscience, materials science, applied physics and condensed matter physics.




Microelectronics, Microsystems And Nanotechnology: Papers Presented Of At Mmn 2000


Book Description

This volume contains papers on the following: CMOS devices and devices based on compound semiconductors; processing; silicon integrated technology and integrated circuit design; quantum physics; nanotechnology; nanodevices, sensors and microsystems. The latest news and future challenges in these fields are presented in invited papers.




Microelectronics, Microsystems and Nanotechnology


Book Description

This volume contains papers on the following: CMOS devices and devices based on compound semiconductors; processing; silicon integrated technology and integrated circuit design; quantum physics; nanotechnology; nanodevices, sensors and microsystems. The latest news and future challenges in these fields are presented in invited papers.




Microelectronics to Nanoelectronics


Book Description

Composed of contributions from top experts, Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability offers a detailed overview of important recent scientific and technological developments in the rapidly evolving nanoelectronics arena. Under the editorial guidance and technical expertise of noted materials scientist Anupama B. Kaul of California Institute of Technology’s Jet Propulsion Lab, this book captures the ascent of microelectronics into the nanoscale realm. It addresses a wide variety of important scientific and technological issues in nanoelectronics research and development. The book also showcases some key application areas of micro-electro-mechanical-systems (MEMS) that have reached the commercial realm. Capitalizing on Dr. Kaul’s considerable technical experience with micro- and nanotechnologies and her extensive research in prestigious academic and industrial labs, the book offers a fresh perspective on application-driven research in micro- and nanoelectronics, including MEMS. Chapters explore how rapid developments in this area are transitioning from the lab to the market, where new and exciting materials, devices, and manufacturing technologies are revolutionizing the electronics industry. Although many micro- and nanotechnologies still face major scientific and technological challenges and remain within the realm of academic research labs, rapid advances in this area have led to the recent emergence of new applications and markets. This handbook encapsulates that exciting recent progress by providing high-quality content contributed by international experts from academia, leading industrial institutions—such as Hewlett-Packard—and government laboratories including the U.S. Department of Energy’s Sandia National Laboratory. Offering something for everyone, from students to scientists to entrepreneurs, this book showcases the broad spectrum of cutting-edge technologies that show significant promise for electronics and related applications in which nanotechnology plays a key role.




Microsystems for Bioelectronics


Book Description

Microsystems for Bioelectronics is the ultimate guide in the biomedical application industry. It provides a physics-based assessment of the limitless potential of miniaturization technologies. This book goes far beyond the complete design of the final systems. It also discusses the developments of computation and communication subsystems. The future of this technology lies in understanding the scaling limits for the individual systems. This includes all of its components and the fundamental energy source that powers all autonomous microsystems. Rapid advances in microfabrication technologies are offering new opportunities and capabilities to develop systems for biomedical applications. These applications include the diagnostics community and those that are active in therapy services. Microsystems for Bioelectronics is one of the only books on the market today that goes into the comprehensive treatment of integrated microsystems.




Semiconductors for Micro- and Nanotechnology


Book Description

Semiconductors play a major role in modern microtechnology, especially in microelectronics. Since the dimensions of new microelectronic components, e.g. computer chips, now reach nanometer size, semiconductor research moves from microtechnology to nanotechnology. An understanding of the semiconductor physics involved in this new technology is of great importance for every student in engineering, especially electrical engineering, microsystem technology and physics. This textbook emphasizes a system-oriented view of semiconductor physics for applications in microsystem technology. While existing books only cover electronic device physics and are mainly written for physics students, this text gives a more hands-on approach to semiconductor physics and so avoids overloading engineering students with mathematical formulas not essential for their studies.




The Nano-Micro Interface


Book Description

Two exciting worlds of science and technology - the nano and micro dimensions. The former is a booming new field of research, the latter the established size range for electronics, and for mutual technological benefit and future commercialization, suitable junctions need to be found. Functional nanostructures such as DNA computers, sensors, neural interfaces, nanooptics or molecular electronics need to be wired to their 'bigger' surroundings. Coming from the opposite direction, microelectronics have experienced an unprecedented miniaturization drive in the last decade, pushing ever further down through the micro size scale towards submicron circuitry. Bringing these two worlds together is a new interdisciplinary challenge for scientists and engineers alike - recognized and substantially funded by the European Commission and other major project initiators worldwide. This book offers a wide range of information from technologies to materials and devices as well as from research to administrative know-how collected by the editors from renowned key members of the nano/micro community.




Commercializing Micro-Nanotechnology Products


Book Description

Micro-nanotechnologies (MNT) are already making a profound impact on our daily lives. New applications are well underway in the US, Asia, and Europe. However, their potentially disruptive nature, along with the public's concerns, has produced a number of challenges. Commercializing Micro-Nanotechnology Products provides a snapshot of the cur




Silicon Earth


Book Description

We are in the center of the most life-changing technological revolution the Earth has ever known. In little more than 65 years, an eye-blink in human history, a single technological invention has launched the proverbial thousand ships, producing the most sweeping and pervasive set of changes ever to wash over humankind; changes that are reshaping the very core of human existence, on a global scale, at a relentlessly accelerating pace. And we are just at the very beginning. Silicon Earth: Introduction to Microelectronics and Nanotechnology introduces readers with little or no technical background to the marvels of microelectronics and nanotechnology, using straightforward language, an intuitive approach, minimal math, and lots of pictures. The general scientific and engineering underpinnings of microelectronics and nanotechnology are described, as well as how this new technological revolution is transforming a broad array of interdisciplinary fields, and civilization as a whole. Special "widget deconstruction" chapters address the inner workings of ubiquitous micro/nano-enabled pieces of technology, such as smartphones, flash drives, and digital cameras. Completely updated and upgraded to full color, the Second Edition: Includes new material on the design of electronic systems, the future of electronics, and the societal impact of micro/nanotechnology Provides new widget deconstructions of cutting-edge tech gadgets like the GPS-enabled smartwatch Adds end-of-chapter study questions and hundreds of new color photos Silicon Earth: Introduction to Microelectronics and Nanotechnology, Second Edition is a pick-up-and-read-cover-to-cover book for those curious about the micro/nanoworld, as well as a classroom-tested, student-and-professor-approved text ideal for an undergraduate-level university course. Lecture slides, homework examples, a deconstruction project, and discussion threads are available via an author-maintained website.