Microfluidic Reactors for Polymer Particles


Book Description

The manipulation of fluids in channels with dimensions in the range from tens to hundreds of micrometers – microfluidics – has recently emerged as a new field of science and technology. Microfluidics has applications spanning analytical chemistry, organic and inorganic synthesis, cell biology, optics and information technology. One particularly promising application is the microfluidic synthesis of polymer particles with precisely controlled dimensions, and a variety of shapes, morphologies and compositions. Written as a comprehensive introduction for scientists and engineers working in microfabrication and microfluidics, Microfluidic Reactors for Polymer Particles covers topics such as: Applications and methods of generation of polymer particles Physics of microfluidic emulsification Formation of droplets in microfluidic systems High-throughput microfluidic systems for formation of droplets Microfluidic production of polymer particles and hydrogel particles Polymer capsules Synthesis of polymer particles with non-conventional shapes This book is intended for a broad audience, including students, researchers and engineers in industry, with interests in physics, chemistry, materials science, engineering or biotechnology.




Polymer Particles


Book Description

In this special volume on polymer particles, recent trends and developments in the synthesis of nano- to micron-sized polymer particles by radical polymerization (Emulsion, Miniemulsion, Microemulsion, and Dispersion Polymerizations) of vinyl monomers in environmentally friendly heterogeneous aqueous and supercritical carbon dioxide fluid media are reviewed by prominent worldwide researchers. In addition to the important challenges and possibilities with regards to design and preparation of functionalized polymer particles of controlled size, the topics described are of great current interest due to the increased awareness of environmental issues.




Polymer Reaction Engineering of Dispersed Systems


Book Description

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students




Microfluidics for Advanced Functional Polymeric Materials


Book Description

A comprehensive and systematic treatment of our current understanding of the microfluidic technique and its advantages in the controllable fabrication of advanced functional polymeric materials. Introducing and summarizing recent advances and achievements in the field, the authors cover the design and fabrication of microfluidic devices, the fundamentals and strategies for controllable microfluidic generation of multiphase liquid systems, and the use of these liquid systems with an elaborate combination of their structures and compositions for generating novel polymer materials, such as microcapsules, microfibers, valves, and membranes. Clear diagrams and illustrations throughout the text make the relevant theory and technologies more readily accessible. The result is a specialist reference for materials scientists, organic, polymer and physical chemists, and chemical engineers.




Polymeric Gels


Book Description

Polymeric Gels: Characterization, Properties and Biomedical Applications covers the fundamentals and applications of polymeric gels. Particular emphasis is given to their synthesis, properties and characteristics, with topics such as natural, synthetic, and smart polymeric gels, medical applications, and advancements in conductive and magnetic gels presented. The book covers the basics and applications of hydrogels, providing readers with a comprehensive guide on the types of polymeric gels used in the field of biomedical engineering. - Provides guidance for decisions on the suitability and appropriateness of a synthetic route and characterization technique for particular polymeric networks - Analyzes and compares experimental data - Presents in-depth information on the physical properties of polymeric gels using mathematical models - Uses an interdisciplinary approach to discuss potential new applications for both established polymeric gels and recent advances




Nanomaterials: A Danger or a Promise?


Book Description

With the increased presence of nanomaterials in commercial products such as cosmetics and sunscreens, fillers in dental fillings, water filtration process, catalysis, photovoltaic cells, bio-detection, a growing public debate is emerging on toxicological and environmental effects of direct and indirect exposure to these materials. Nanomaterials: A Danger or a Promise? forms a balanced overview of the health and environmental issues of nanoscale materials. By considering both the benefits and risks associated with nanomaterials, Nanomaterials: A Danger or a Promise? compiles a complete and detailed image of the many aspects of the interface between nanomaterials and their real-life application. The full cycle of nanomaterials life will be presented and critically assessed to consider and answer questions such as: How are nanomaterials made? What they are used for? What is their environmental fate? Can we make them better? Including coverage of relevant aspects about the toxicity of manufactured nanomaterials, nanomaterials life cycle, exposure issues, Nanomaterials: A Danger or a Promise? provides a comprehensive overview of the actual knowledge in these fields but also presents perspectives for the future development of a safer nanoscience. This comprehensive resource is a key reference for students, researcher, manufacturers and industry professionals alike.




Microchemical Engineering in Practice


Book Description

Microchemical Engineering in Practice provides the information chemists and engineers need to evaluate the use of microreactors, covering the technical, operational, and economic considerations for various applications. It explains the systems needed to use microreactors in production and presents examples of microreactor use in different chemistries, including larger scale production processes. There are guidelines on calculating the costs and the risks of production using continuous flow microreactors. Complete with case studies, this is an essential guide for chemists and engineers interested in investigating the advantages of chemical microreactors.




Insights and Advancements in Microfluidics


Book Description

This book is a printed edition of the Special Issue "Insights and Advancements in Microfluidics" that was published in Micromachines




Advanced Polymer Nanoparticles


Book Description

Polymer latex particles continue to become increasingly important in numerous commercial applications. Advanced synthesis techniques are the key to developing new functionality for nanoparticles. These methods make it possible to tailor the size, chemical composition, or properties of these particles, as well as the molecular weight of the polymer




Microfluidic Devices for Biomedical Applications


Book Description

Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. - Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores a wide range of medical applications - Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies - Details applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and its role in developing tissue scaffolds, and stem cell engineering