Microlocal Analysis for Differential Operators


Book Description

This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.




Microlocal Analysis and Applications


Book Description

CONTENTS: J.M. Bony: Analyse microlocale des equations aux derivees partielles non lineaires.- G.G. Grubb: Parabolic pseudo-differential boundary problems and applications.- L. H|rmander: Quadratic hyperbolic operators.- H. Komatsu: Microlocal analysis in Gevrey classes and in complex domains.- J. Sj|strand: Microlocal analysis for the periodic magnetic Schr|dinger equation and related questions.







Microlocal Analysis, Sharp Spectral Asymptotics and Applications V


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II, III and IV are applied to multiparticle quantum theory (asymptotics of the ground state energy and related problems), and to miscellaneous spectral problems.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications I


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the general microlocal semiclassical approach is developed, and microlocal and local semiclassical spectral asymptotics are derived.




Microlocal Analysis


Book Description

This volume is the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Microlocal Analysis and its Applications to Partial Differential Equations, held July 10-16, 1983 in Boulder, Colorado. It contains refereed articles which were delivered at the conference. Two of the papers are survey articles, one on uniqueness and non-uniqueness in the Cauchy problem and one on hypoanalytic structures; the rest are either detailed announcements or complete papers covering such areas as spectrum of operators, nonlinear problems, asymptotics, pseudodifferential operators of multiple characteristics and operators on groups and homogeneous spaces. The volume should be useful to active mathematicians and graduate students working on linear and nonlinear partial differential equations and related areas.




Microlocal Analysis and Spectral Theory


Book Description

The NATO Advanced Study Institute "Microlocal Analysis and Spectral The ory" was held in Tuscany (Italy) at Castelvecchio Pascoli, in the district of Lucca, hosted by the international vacation center "11 Ciocco" , from September 23 to October 3, 1996. The Institute recorded the considerable progress realized recently in the field of Microlocal Analysis. In a broad sense, Microlocal Analysis is the modern version of the classical Fourier technique in solving partial differential equa tions, where now the localization proceeding takes place with respect to the dual variables too. Precisely, through the tools of pseudo-differential operators, wave-front sets and Fourier integral operators, the general theory of the lin ear partial differential equations is now reaching a mature form, in the frame of Schwartz distributions or other generalized functions. At the same time, Microlocal Analysis has grown up into a definite and independent part of Math ematical Analysis, with other applications all around Mathematics and Physics, one major theme being Spectral Theory for Schrodinger equation in Quantum Mechanics.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications II


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the local spectral asymptotics of Volume I in the regular part of the domain are combined with variational estimates in the vicinity of singularities, and global asymptotics are derived in the general form. They are then applied to multiple cases and asymptotics with respect to a spectral parameter. Finally, cases in which only general methods but not the results can be applied (non-standard asymptotics) are studied.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications IV


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II and III are applied to the Schrödinger and Dirac operators in non-smooth settings and in higher dimensions.