Microlocal Analysis and Applications


Book Description

CONTENTS: J.M. Bony: Analyse microlocale des equations aux derivees partielles non lineaires.- G.G. Grubb: Parabolic pseudo-differential boundary problems and applications.- L. H|rmander: Quadratic hyperbolic operators.- H. Komatsu: Microlocal analysis in Gevrey classes and in complex domains.- J. Sj|strand: Microlocal analysis for the periodic magnetic Schr|dinger equation and related questions.







The Cumulative Book Index


Book Description

A world list of books in the English language.







Proceedings in Print


Book Description







German books in print


Book Description




Geometric Topology: Recent Developments


Book Description

Geometric Topology can be defined to be the investigation of global properties of a further structure (e.g. differentiable, Riemannian, complex,algebraic etc.) one can impose on a topological manifold. At the C.I.M.E. session in Montecatini, in 1990, three courses of lectures were given onrecent developments in this subject which is nowadays emerging as one of themost fascinating and promising fields of contemporary mathematics. The notesof these courses are collected in this volume and can be described as: 1) the geometry and the rigidity of discrete subgroups in Lie groups especially in the case of lattices in semi-simple groups; 2) the study of the critical points of the distance function and its appication to the understanding of the topology of Riemannian manifolds; 3) the theory of moduli space of instantons as a tool for studying the geometry of low-dimensional manifolds. CONTENTS: J. Cheeger: Critical Points of Distance Functions and Applications to Geometry.- M. Gromov, P. Pansu, Rigidity of Lattices: An Introduction.- Chr. Okonek: Instanton Invariants and Algebraic Surfaces.




Calculus of Variations and Nonlinear Partial Differential Equations


Book Description

This volume provides the texts of lectures given by L. Ambrosio, L. Caffarelli, M. Crandall, L.C. Evans, N. Fusco at the Summer course held in Cetraro, Italy in 2005. These are introductory reports on current research by world leaders in the fields of calculus of variations and partial differential equations. Coverage includes transport equations for nonsmooth vector fields, viscosity methods for the infinite Laplacian, and geometrical aspects of symmetrization.