Microlocal Analysis and Spectral Theory


Book Description

The NATO Advanced Study Institute "Microlocal Analysis and Spectral The ory" was held in Tuscany (Italy) at Castelvecchio Pascoli, in the district of Lucca, hosted by the international vacation center "11 Ciocco" , from September 23 to October 3, 1996. The Institute recorded the considerable progress realized recently in the field of Microlocal Analysis. In a broad sense, Microlocal Analysis is the modern version of the classical Fourier technique in solving partial differential equa tions, where now the localization proceeding takes place with respect to the dual variables too. Precisely, through the tools of pseudo-differential operators, wave-front sets and Fourier integral operators, the general theory of the lin ear partial differential equations is now reaching a mature form, in the frame of Schwartz distributions or other generalized functions. At the same time, Microlocal Analysis has grown up into a definite and independent part of Math ematical Analysis, with other applications all around Mathematics and Physics, one major theme being Spectral Theory for Schrodinger equation in Quantum Mechanics.




Noncommutative Microlocal Analysis


Book Description




Pseudodifferential Operators and Spectral Theory


Book Description

I had mixed feelings when I thought how I should prepare the book for the second edition. It was clear to me that I had to correct all mistakes and misprints that were found in the book during the life of the first edition. This was easy to do because the mistakes were mostly minor and easy to correct, and the misprints were not many. It was more difficult to decide whether I should update the book (or at least its bibliography) somehow. I decided that it did not need much of an updating. The main value of any good mathematical book is that it teaches its reader some language and some skills. It can not exhaust any substantial topic no matter how hard the author tried. Pseudodifferential operators became a language and a tool of analysis of partial differential equations long ago. Therefore it is meaningless to try to exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet (the database of the American Mathematical Society) in a few seconds found 3695 sources, among them 363 books, during its search for "pseudodifferential operator". (The search also led to finding 963 sources for "pseudo-differential operator" but I was unable to check how much the results ofthese two searches intersected). This means that the corresponding words appear either in the title or in the review published in Mathematical Reviews.




Elliptic Mixed, Transmission and Singular Crack Problems


Book Description

Mixed, transmission, or crack problems belong to the analysis of boundary value problems on manifolds with singularities. The Zaremba problem with a jump between Dirichlet and Neumann conditions along an interface on the boundary is a classical example. The central theme of this book is to study mixed problems in standard Sobolev spaces as well as in weighted edge spaces where the interfaces are interpreted as edges. Parametrices and regularity of solutions are obtained within a systematic calculus of boundary value problems on manifolds with conical or edge singularities. This calculus allows singularities on the interface and homotopies between mixed and crack problems. Additional edge conditions are computed in terms of relative index results. In a detailed final chapter, the intuitive ideas of the approach are illustrated, and there is a discussion of future challenges. A special feature of the text is the inclusion of many worked-out examples which help the reader to appreciate the scope of the theory and to treat new cases of practical interest. This book is addressed to mathematicians and physicists interested in models with singularities, associated boundary value problems, and their solvability strategies based on pseudo-differential operators. The material is also useful for students in higher semesters and young researchers, as well as for experienced specialists working in analysis on manifolds with geometric singularities, the applications of index theory and spectral theory, operator algebras with symbolic structures, quantisation, and asymptotic analysis.




Microlocal Analysis and Precise Spectral Asymptotics


Book Description

The problem of spectral asymptotics, in particular the problem of the asymptotic dis tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; moreover, it is very important for the general theory of partial differential operators. I started working in this domain in 1979 after R. Seeley found a remainder estimate of the same order as the then hypothetical second term for the Laplacian in domains with boundary, and M. Shubin and B. M. Levitan suggested that I should try to prove Weyl's conjecture. During the past fifteen years I have not left the topic, although I had such intentions in 1985 when the methods I invented seemed to fai! to provide furt her progress and only a couple of not very exciting problems remained to be solved. However, at that time I made the step toward local semiclassical spectral asymptotics and rescaling, and new horizons opened.







Microlocal Analysis for Differential Operators


Book Description

This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.




Elliptic and Parabolic Equations


Book Description

The international workshop on which this proceedings volume is based on brought together leading researchers in the field of elliptic and parabolic equations. Particular emphasis was put on the interaction between well-established scientists and emerging young mathematicians, as well as on exploring new connections between pure and applied mathematics. The volume contains material derived after the workshop taking up the impetus to continue collaboration and to incorporate additional new results and insights.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications V


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II, III and IV are applied to multiparticle quantum theory (asymptotics of the ground state energy and related problems), and to miscellaneous spectral problems.




Microlocal Analysis, Sharp Spectral Asymptotics and Applications IV


Book Description

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II and III are applied to the Schrödinger and Dirac operators in non-smooth settings and in higher dimensions.