Micronutrients in Tropical Food Crop Production


Book Description

The mission of the International Fertilizer Development Center is to increase food production through the improvement of fertilizers and fertilizer practices for the developing countries with special emphasis on tropical and subtropical agriculture. The principal aim is to ensure that fertilizer technology is not a limiting factor to food production in those regions. Although the full extent to which deficiency of micronutrients hampers food production is yet un known, there is ample evidence that problem areas exist and more will be identified as crop production is intensified and marginal lands are exploited. Therefore, it seems fully appropriate at this time that IFDC, as an international organization, take a leadership role in developing micronutrient fertilizer technology appropriate for the tropics and subtropics. The gravity of micronutrient deficiency as a limiting factor to crop pro duction varies from crop to crop and from soil to soil. The effects may range from slight yield reductions to complete crop failure. While the economic impact of omitting micronutrients in seriously affected areas (e.g., Zn in Brazilian Cerrado) is convincing, it is difficult to estimate the yearly loss in crop production due to unsuspected micronutrient deficiency. Active soil and crop testing programs in regions with advanced agricultural systems are aimed at recognizing micronutrients as a limiting plant nutrient in time to allow corrective measures and prevent yield loss. Successful micronutrient monitoring systems are generally limited to developed economies or to developing economies producing export cash crops.










Micronutrient Deficiencies in Global Crop Production


Book Description

A deficiency of one or more of the eight plant micronutrients (boron, chlorine, copper, iron, manganese, molybdenum, nickel and zinc) will adversely affect both the yield and quality of crops. Micronutrient deficiencies in crops occur in many parts of the world, at various scales (from one to millions of hectares), but differences in soil conditions, climate, crop genotypes and management, result in marked variations in their occurrence. The causes, effects and alleviation of micronutrient deficiencies in crops in: Australia, India, China, Turkey, the Near East, Africa, Europe, South America and the United States of America, are covered, and these are representative of most of the different conditions under which crops are grown anywhere in the world. Links between low contents of iodine, iron and zinc (human micronutrients) in staple grains and the incidence of human health problems are discussed, together with the ways in which the micronutrient content of food crops can be increased and their bioavailability to humans improved. Detailed treatment of topics, such as: soil types associated with deficiencies, soil testing and plant analysis, field experiments, innovative treatments, micronutrients in the subsoil, nutrient interactions, effects of changing cropping systems, micronutrient budgets and hidden deficiencies in various chapters provides depth to the broad coverage of the book. This book provides a valuable guide to the requirements of crops for plant micronutrients and the causes, occurrence and treatment of deficiencies. It is essential reading for many agronomy, plant nutrition and agricultural extension professionals.




Soil Fertility and Nutrient Management


Book Description

The book entitled Soil Fertility and Nutrient Management is a compilation work and most of the information was farmed very critically covering all the main topics of plant nutrition. The book will be serve as useful reference to students, teachers, researchers scientists, policy makers and other interested in soil science, agronomy, crop science, environmental sciences and agriculture. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.




Sustainable Dryland Farming


Book Description

Sustainability is extremely important in dryland farming under global climatic change. Technology devised by various agricultural institutions is provided in this book.Variation in environmental factors may influence entire ecological system which may not be ideal for agriculture. Under such global scenario , plant growth is under geopardy. New varieties have to be developed to suit the varied climate or crop strategy in view of crop domain suiting ideal available temperature has to be framed to make dryland farming sustainable .Various agrotechnology needs to be adapted to avoid depletion in productivity. Global climatic change in future may limit the productivity of available varieties. Corporate farming may come to rescue the problem under present scenario. Various agrotechnologies described in this book may help the farmers and planners to overcome the situation in future. Critical problems have been dealt with probable solutions to suit the requirements .Multicropping system , organic farming, , watersheds promotion, reclamation of degraded soils, soil health cards, use of portrals of weather forecast, early harvest on physiological maturity and use of instant remedies timely under unfavourable season shall ease the failure of crop . Long outstanding demand has thus fulfilled with this book.




Nutrient Dynamics for Sustainable Crop Production


Book Description

The cropping system is one of the important components of sustainable agriculture, since it provides more efficient nutrient cycling. As such, balanced fertilization must be based on the concept of sustainable crop production. Feeding the rapidly growing world population using environmentally sustainable production systems is a major challenge, especially in developing countries. A number of studies have highlighted the fact that degradation of the world's cultivated soils is largely responsible for low and plateauing yields. Soil is lost rapidly but only formed over millennia, and this represents the greatest global threat to nutrient dynamics in agriculture. This means that nutrient management is essential to provide food and nutritional security for current and future generations. Nutrient dynamics and soil sustainability imply the maintenance of the desired ecological balance, the enhancement and preservation of soil functions, and the protection of biodiversity above and below ground. Understanding the role of nutrient management as a tool for soil sustainability and nutritional security requires a holistic approach to a wide range of soil parameters (biological, physical, and chemical) to assess the soil functions and nutrient dynamics of a crop management system within the desired timescale. Further, best nutrient management approaches are important to advance soil sustainability and food and nutritional security without compromising the soil quality and productive potential. Sustainable management practices must allow environmentally and economically sustainable yields and restore soil health and sustainability. This book presents soil management approaches that can provide a wide range of benefits, including improved fertility, with a focus on the importance of nutrient dynamics. Discussing the broad impacts of nutrients cycling on the sustainability of soil and the cropping systems that it supports, it also addresses nutrient application to allow environmentally and economically sustainable agroecosystems that restore soil health. Arguing that balanced fertilization must be based on the concept of INM for a cropping system rather than a crop, it provides a roadmap to nutrient management for sustainability. This richly illustrated book features tables, figures and photographs and includes extensive up-to-date references, making it a valuable resource for policymakers and researchers, as well as undergraduate and graduate students of Soil Science, Agronomy, Ecology and Environmental Sciences.