Microorganisms in Environmental Management


Book Description

Microbes and their biosynthetic capabilities have been invaluable in finding solutions for several intractable problems mankind has encountered in maintaining the quality of the environment. They have, for example, been used to positive effect in human and animal health, genetic engineering, environmental protection, and municipal and industrial waste treatment. Microorganisms have enabled feasible and cost-effective responses which would have been impossible via straightforward chemical or physical engineering methods. Microbial technologies have of late been applied to a range of environmental problems, with considerable success. This survey of recent scientific progress in usefully applying microbes to both environmental management and biotechnology is informed by acknowledgement of the polluting effects on the world around us of soil erosion, the unwanted migration of sediments, chemical fertilizers and pesticides, and the improper treatment of human and animal wastes. These harmful phenomena have resulted in serious environmental and social problems around the world, problems which require us to look for solutions elsewhere than in established physical and chemical technologies. Often the answer lies in hybrid applications in which microbial methods are combined with physical and chemical ones. When we remember that these highly effective microorganisms, cultured for a variety of applications, are but a tiny fraction of those to be found in the world around us, we realize the vastness of the untapped and beneficial potential of microorganisms. At present, comprehending the diversity of hitherto uncultured microbes involves the application of metagenomics, with several novel microbial species having been discovered using culture-independent approaches. Edited by recognized leaders in the field, this penetrating assessment of our progress to date in deploying microorganisms to the advantage of environmental management and biotechnology will be widely welcomed.




Microbial Control of Insect and Mite Pests


Book Description

Microbial Control of Insect and Mite Pests: From Theory to Practice is an important source of information on microbial control agents and their implementation in a variety of crops and their use against medical and veterinary vector insects, in urban homes and other structures, in turf and lawns, and in rangeland and forests. This comprehensive and enduring resource on entomopathogens and microbial control additionally functions as a supplementary text to courses in insect pathology, biological control, and integrated pest management. It gives regulators and producers up-to-date information to support their efforts to facilitate and adopt this sustainable method of pest management. Authors include an international cadre of experts from academia, government research agencies, technical representatives of companies that produce microbial pesticides, agricultural extension agents with hands on microbial control experience in agriculture and forestry, and other professionals working in public health and urban entomology. Covers all pathogens, including nematodes Addresses the rapidly progressing developments in insect pathology and microbial control, particularly with regard to molecular methods Demonstrates practical use of entomopathogenic microorganisms for pest control, including tables describing which pathogens are available commercially Highlights successful practices in microbial control of individual major pests in temperate, subtropical, and tropical zones Features an international group of contributors, each of which is an expert in their fields of research related to insect pathology and microbial control




Microbiomes of the Built Environment


Book Description

People's desire to understand the environments in which they live is a natural one. People spend most of their time in spaces and structures designed, built, and managed by humans, and it is estimated that people in developed countries now spend 90 percent of their lives indoors. As people move from homes to workplaces, traveling in cars and on transit systems, microorganisms are continually with and around them. The human-associated microbes that are shed, along with the human behaviors that affect their transport and removal, make significant contributions to the diversity of the indoor microbiome. The characteristics of "healthy" indoor environments cannot yet be defined, nor do microbial, clinical, and building researchers yet understand how to modify features of indoor environmentsâ€"such as building ventilation systems and the chemistry of building materialsâ€"in ways that would have predictable impacts on microbial communities to promote health and prevent disease. The factors that affect the environments within buildings, the ways in which building characteristics influence the composition and function of indoor microbial communities, and the ways in which these microbial communities relate to human health and well-being are extraordinarily complex and can be explored only as a dynamic, interconnected ecosystem by engaging the fields of microbial biology and ecology, chemistry, building science, and human physiology. This report reviews what is known about the intersection of these disciplines, and how new tools may facilitate advances in understanding the ecosystem of built environments, indoor microbiomes, and effects on human health and well-being. It offers a research agenda to generate the information needed so that stakeholders with an interest in understanding the impacts of built environments will be able to make more informed decisions.




Pharmaceutical Microbiological Quality Assurance and Control


Book Description

Relying on practical examples from the authors’ experience, this book provides a thorough and modern approach to controlling and monitoring microbial contaminations during the manufacturing of non-sterile pharmaceuticals. Offers a comprehensive guidance for non-sterile pharmaceuticals microbiological QA/QC Presents the latest developments in both regulatory expectations and technical advancements Provides guidance on statistical tools for risk assessment and trending of microbiological data Describes strategy and practical examples from the authors’ experience in globalized pharmaceutical companies and expert networks Offers a comprehensive guidance for non-sterile pharmaceuticals microbiological QA/QC Presents the latest developments in both regulatory expectations and technical advancements Provides guidance on statistical tools for risk assessment and trending of microbiological data Describes strategy and practical examples from the authors’ experience in globalized pharmaceutical companies and expert networks




Exploitation of Microorganisms


Book Description

Microbiology may be described as one of the younger sciences with its history, as a precise subject, only dating as far back as Pasteur in the mid 1800s and his revelation both of the role of microorganisms in nature and their importance to human welfare. Medical scientists rapidly took up the challenge, with their area of microbiology flourishing and expanding almost in complete isolation from the rest of biology. We now know, of course, that microorganisms have always played an important, if not essential role, in the biosphere with fermented foods and beverages, plant and animal diseases and nutrient cycling foremost in their sphere of activities. Within the last twenty years, microbiology has received two enormous boosts with the developments in microbial genetics and genetic engineering probably being the most influential, and the greater awareness of pollution and environmental sustainability following a close second. In 1990, your editor had the privilege and pleasure of being elected as President of The Association of Applied Biologists in the United King dom and, as the topic for his three-day Presidential Conference, chose 'The exploitation of microorganisms in applied biology'. This meeting stimu lated great interest in a wide range of subject areas, from weed control to nematology, from plant breeding to plant pathology, from mushrooms to mycorrhiza. The proceedings of this meeting were published in Aspects of Applied Biology, No. 24, 1990.




Microorganisms in Foods 8


Book Description

Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance is written by the International Commission on Microbiological Specifications for Foods with assistance from a limited number of consultants. The purpose of this book is to provide guidance on appropriate testing of food processing environments, processing lines, and finished product to enhance the safety and microbiological quality of the food supply. Microorganisms in Foods 8 consists of two parts. Part I, Principles of Using Data in Microbial Control, builds on the principles of Microorganisms in Foods 7: Microbiological Testing in Food Safety Management (2002), which illustrates how HACCP and Good Hygienic Practices (GHP) provide greater assurance of safety than microbiological testing, but also identifies circumstances where microbiological testing may play a useful role. Part II, Specific Applications to Commodities, provides practical examples of criteria and other tests and is an updated and expanded version of Part II of Microorganisms in Foods 2: Sampling for Microbiological Analysis: Principles and Specific Applications (2nd ed. 1986). Part II also builds on the 2nd edition of Microorganisms in Foods 6: Microbial Ecology of Food Commodities (2005) by identifying appropriate tests to evaluation the effectiveness of controls.




Microorganisms in Home and Indoor Work Environments


Book Description

Despite the large amount of money spent on research into pollution of the indoor environment, the problem remains complex with major gaps in our knowledge of the identities and sources of pollutants and of the effects of prolonged exposure to indoor pollutants on health. Microorganisms in Home and Indoor Work Environments considers one such group o




Bugs as Drugs


Book Description

Examining the enormous potential of microbiome manipulation to improve health Associations between the composition of the intestinal microbiome and many human diseases, including inflammatory bowel disease, cardiovascular disease, metabolic disorders, and cancer, have been elegantly described in the past decade. Now, whole-genome sequencing, bioinformatics, and precision gene-editing techniques are being combined with centuries-old therapies, such as fecal microbiota transplantation, to translate current research into new diagnostics and therapeutics to treat complex diseases. Bugs as Drugs provides a much-needed overview of microbes in therapies and will serve as an excellent resource for scientists and clinicians as they carry out research and clinical studies on investigating the roles the microbiota plays in health and disease. In Bugs as Drugs, editors Robert A. Britton and Patrice D. Cani have assembled a fascinating collection of reviews that chart the history, current efforts, and future prospects of using microorganisms to fight disease and improve health. Sections cover traditional uses of probiotics, next-generation microbial therapeutics, controlling infectious diseases, and indirect strategies for manipulating the host microbiome. Topics presented include: How well-established probiotics support and improve host health by improving the composition of the intestinal microbiota of the host and by modulating the host immune response. The use of gene editing and recombinant DNA techniques to create tailored probiotics and to characterize next-generation beneficial microbes. For example, engineering that improves the anti-inflammatory profile of probiotics can reduce the number of colonic polyps formed, and lactobacilli can be transformed into targeted delivery systems carrying therapeutic proteins or bioengineered bacteriophage. The association of specific microbiota composition with colorectal cancer, liver diseases, osteoporosis, and inflammatory bowel disease. The gut microbiota has been proposed to serve as an organ involved in regulation of inflammation, immune function, and energy homeostasis. Fecal microbiota transplantation as a promising treatment for numerous diseases beyond C. difficile infection. Practical considerations for using fecal microbiota transplantation are provided, while it is acknowledged that more high-quality evidence is needed to ascertain the importance of strain specificity in positive treatment outcomes. Because systems biology approaches and synthetic engineering of microbes are now high-throughput and cost-effective, a much wider range of therapeutic possibilities can be explored and vetted.




Food Spoilage Microorganisms


Book Description

The control of microbiological spoilage requires an understanding of a number of factors including the knowledge of possible hazards, their likely occurrence in different products, their physiological properties and the availability and effectiveness of different preventative measures. Food spoilage microorganisms focuses on the control of microbial spoilage and provides an understanding necessary to do this.The first part of this essential new book looks at tools, techniques and methods for the detection and analysis of microbial food spoilage with chapters focussing on analytical methods, predictive modelling and stability and shelf life assessment. The second part tackles the management of microbial food spoilage with particular reference to some of the major food groups where the types of spoilage, the causative microorganisms and methods for control are considered by product type. The following three parts are then dedicated to yeasts, moulds and bacteria in turn, and look in more detail at the major organisms of significance for food spoilage. In each chapter the taxonomy, spoilage characteristics, growth, survival and death characteristics, methods for detection and control options are discussed.Food spoilage microorganisms takes an applied approach to the subject and is an indispensable guide both for the microbiologist and the non-specialist, particularly those whose role involves microbial quality in food processing operations. Looks at tools, techniques and methods for the detection and analysis of microbial food spoilage Discusses the management control of microbial food spoilage Looks in detail at yeasts, moulds and bacteria




Food Spoilage Microorganisms


Book Description

Food Spoilage Microorganisms: Ecology and Control focuses on the occurrence, outbreak, consequences, control, and evaluation of spoilage microorganisms in food, providing the necessary basic knowledge of food spoilage ecology and control so as to ensure food safety, especially in developing countries where food hygiene in storage requires special care. The first part of the book looks at spoilage microorganisms in plant origin foods, such as cereals, beans, fruits, and vegetables, and the second part tackles the spoilage microorganisms in animal origin foods like meat, poultry, seafood, powdered milk, and egg products. In each chapter, the taxonomy of spoilage microorganisms, spoilage characteristics, consequences and possible mechanisms, and specific methods for detection and evaluation are discussed based on the basis surface introduction. The control, prevention, and management options for spoilage microorganisms are also presented. In addition, opportunities and challenges are summarized and predicted in the last part of each chapter.