Transcriptional and Translational Regulation of Stem Cells


Book Description

This volume describes the latest findings on transcriptional and translational regulation of stem cells. Both transcriptional activators and repressors have been shown to be crucial for the maintenance of the stem cell state. A key element of stem cell maintenance is repression of differentiation factors or developmental genes – achieved transcriptionally, epigenetically by the Polycomb complex, and post-transcriptionally by RNA-binding proteins and microRNAs. This volume takes two approaches to this topic – (1) illustrating the general principles outlined above through a series of different stem cell examples – embryonic, iPS and adult stem cells, and (2) describing several molecular families that have been shown to have roles in regulation of multiple stem cell populations.




MicroRNA in Regenerative Medicine


Book Description

Regulating virtually all biological processes, the genome's 2,654 newly discovered variants of mature microRNAs – short ribonucleic acid molecules found in eukaryotic cells – hold a key role in the body's toolkit of regenerative and reparative capacities. Identifying how to activate and deliver these specialist molecules may aid in the repair and regeneration of major tissue and organ damage in future therapies. In MicroRNA and Regenerative Medicine, Second Edition, over 50 leading experts address foundational and emerging topics in the field. Concisely summarizing and evaluating key findings from new research and their translational application, contributors examine current and future significance of clinical research in the miRNA area. Coverage encompasses all major aspects of fundamental stem cell and developmental biology, including the uses of miRNA in cell and tissue plasticity, developmental biology, tissue repair, and regeneration. In particular, contributors provide focused coverage of methodologies for regenerative intervention and tissue engineering. Topics new to this edition include proteomic changes during tissue repair and regeneration, horizontal transfer of miRNAs in tissue regeneration, tissue stemness, peripheral nerve regeneration, miRNA as biomarkers, microRNA in pregnancy and embryo development, exogenous and diet derived microRNA in tissue development, ocular microRNA, mitochondrial microRNA, sensory hair cell death and regeneration, and microRNA in senescence. - Features chapter contributions from international leaders in the field, covering the spectrum from bench to bedside - Includes short, applied chapters offering focused discussion and practical examples - Incorporates multi-color text layout with more than 150 color figures to illustrate important findings




Hormones, Metabolism and the Benefits of Exercise


Book Description

The world is faced with an epidemic of metabolic diseases such as obesity and type 2 diabetes. This is due to changes in dietary habits and the decrease in physical activity. Exercise is usually part of the prescription, the first line of defense, to prevent or treat metabolic disorders. However, we are still learning how and why exercise provides metabolic benefits in human health. This open access volume focuses on the cellular and molecular pathways that link exercise, muscle biology, hormones and metabolism. This will include novel “myokines” that might act as new therapeutic agents in the future.




Mesenchymal Stem Cell Derived Exosomes


Book Description

Mesenchymal stem cell-derived exosomes are at the forefront of research in two of the most high profile and funded scientific areas – cardiovascular research and stem cells. Mesenchymal Stem Cell Derived Exosomes provides insight into the biofunction and molecular mechanisms, practical tools for research, and a look toward the clinical applications of this exciting phenomenon which is emerging as an effective diagnostic. Primarily focused on the cardiovascular applications where there have been the greatest advancements toward the clinic, this is the first compendium for clinical and biomedical researchers who are interested in integrating MSC-derived exosomes as a diagnostic and therapeutic tool. - Introduces the MSC-exosome mediated cell-cell communication - Covers the major functional benefits in current MSC-derived exosome studies - Discusses strategies for the use of MSC-derived exosomes in cardiovascular therapies




Principles of Regenerative Medicine


Book Description

Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs




MicroRNAs in Diseases and Disorders


Book Description

From pathology to treatment, MicroRNAs in Diseases and Disorders highlights the role of microRNAs (miRNAs) in the development and progression of a variety of diseases, including cancer, neurological disease, endocrine disease and autoimmune disease, and underscores the utilization of miRNA targets in the treatment of these conditions. Providing a comprehensive account, this book also includes the identification of miRNAs as diagnostic and prognostic biomarkers for disease, as well as evaluates translational value from clinical trials using synthesized and functionalized miRNA mimics and inhibitors. With a global contribution list and chapters from leading experts across the field, MicroRNAs in Diseases and Disorders is an invaluable reference to miRNA researchers and health professionals in a variety of disease areas in government, academia and industry. The book will also appeal to pharmaceutical and medicinal chemists with an interest in miRNA targeting therapeutics, as well as to advanced students in chemical biology and drug discovery.




Stem Cells & Regenerative Medicine


Book Description

Defined as, “The science about the development of an embryo from the fertilization of the ovum to the fetus stage,” embryology has been a mainstay at universities throughout the world for many years. Throughout the last century, embryology became overshadowed by experimental-based genetics and cell biology, transforming the field into developmental biology, which replaced embryology in Biology departments in many universities. Major contributions in this young century in the fields of molecular biology, biochemistry and genomics were integrated with both embryology and developmental biology to provide an understanding of the molecular portrait of a “development cell.” That new integrated approach is known as stem-cell biology; it is an understanding of the embryology and development together at the molecular level using engineering, imaging and cell culture principles, and it is at the heart of this seminal book. Stem Cells and Regenerative Medicine: From Molecular Embryology to Tissue Engineering is completely devoted to the basic developmental, cellular and molecular biological aspects of stem cells as well as their clinical applications in tissue engineering and regenerative medicine. It focuses on the basic biology of embryonic and cancer cells plus their key involvement in self-renewal, muscle repair, epigenetic processes, and therapeutic applications. In addition, it covers other key relevant topics such as nuclear reprogramming induced pluripotency and stem cell culture techniques using novel biomaterials. A thorough introduction to stem-cell biology, this reference is aimed at graduate students, post-docs, and professors as well as executives and scientists in biotech and pharmaceutical companies.




Cell Cycle Regulation


Book Description

This book is a state-of-the-art summary of the latest achievements in cell cycle control research with an outlook on the effect of these findings on cancer research. The chapters are written by internationally leading experts in the field. They provide an updated view on how the cell cycle is regulated in vivo, and about the involvement of cell cycle regulators in cancer.




Cell Engineering and Regeneration


Book Description

This reference work presents the origins of cells for tissue engineering and regeneration, including primary cells, tissue-specific stem cells, pluripotent stem cells and trans-differentiated or reprogrammed cells. There is particular emphasis on current understanding of tissue regeneration based on embryology and evolution studies, including mechanisms of amphibian regeneration. The book covers the use of autologous versus allogeneic cell sources, as well as various procedures used for cell isolation and cell pre-conditioning , such as cell sorting, biochemical and biophysical pre-conditioning, transfection and aggregation. It also presents cell modulation using growth factors, molecular factors, epigenetic approaches, changes in biophysical environment, cellular co-culture and other elements of the cellular microenvironment. The pathways of cell delivery are discussed with respect to specific clinical situations, including delivery of ex vivo manipulated cells via local and systemic routes, as well as activation and migration of endogenous reservoirs of reparative cells. The volume concludes with an in-depth discussion of the tracking of cells in vivo and their various regenerative activities inside the body, including differentiation, new tissue formation and actions on other cells by direct cell-to-cell communication and by secretion of biomolecules.




Dilated Cardiomyopathy


Book Description

This open access book presents a comprehensive overview of dilated cardiomyopathy, providing readers with practical guidelines for its clinical management. The first part of the book analyzes in detail the disease’s pathophysiology, its diagnostic work up as well as the prognostic stratification, and illustrates the role of genetics and gene-environment interaction. The second part presents current and future treatment options, highlighting the importance of long-term and individualized treatments and follow-up. Furthermore, it discusses open issues, such as the apparent healing phenomenon, the early prognosis of arrhythmic events or the use of genetic testing in clinical practice. Offering a multidisciplinary approach for optimizing the clinical management of DCM, this book is an invaluable aid not only for the clinical cardiologists, but for all physicians involved in the care of this challenging disease.