Scanning Electron Microscopy and X-Ray Microanalysis


Book Description

This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.




Advanced Scanning Electron Microscopy and X-Ray Microanalysis


Book Description

This book has its origins in the intensive short courses on scanning elec tron microscopy and x-ray microanalysis which have been taught annually at Lehigh University since 1972. In order to provide a textbook containing the materials presented in the original course, the lecturers collaborated to write the book Practical Scanning Electron Microscopy (PSEM), which was published by Plenum Press in 1975. The course con tinued to evolve and expand in the ensuing years, until the volume of material to be covered necessitated the development of separate intro ductory and advanced courses. In 1981 the lecturers undertook the project of rewriting the original textbook, producing the volume Scan ning Electron Microscopy and X-Ray Microanalysis (SEMXM). This vol ume contained substantial expansions of the treatment of such basic material as electron optics, image formation, energy-dispersive x-ray spectrometry, and qualitative and quantitative analysis. At the same time, a number of chapters, which had been included in the PSEM vol ume, including those on magnetic contrast and electron channeling con trast, had to be dropped for reasons of space. Moreover, these topics had naturally evolved into the basis of the advanced course. In addition, the evolution of the SEM and microanalysis fields had resulted in the devel opment of new topics, such as digital image processing, which by their nature became topics in the advanced course.




X-Ray Microscopy


Book Description

A complete introduction to x-ray microscopy, covering optics, 3D and chemical imaging, lensless imaging, radiation damage, and applications.




Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis


Book Description

Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.




Scanning Electron Microscopy for the Life Sciences


Book Description

A guide to modern scanning electron microscopy instrumentation, methodology and techniques, highlighting novel applications to cell and molecular biology.




Scanning Electron Microscopy


Book Description

Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.




Liquid Cell Electron Microscopy


Book Description

2.6.2 Electrodes for Electrochemistry




Transmission Electron Microscopy


Book Description

The aim of this book is to outline the physics of image formation, electron specimen interactions and image interpretation in transmission electron mic roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresnel electron diffraction is treated using Huygens' principle. The recogni tion that the Fraunhofer-diffraction pattern is the Fourier transform of the wave amplitude behind a specimen is important because the influence of the imaging process on the contrast transfer of spatial frequencies can be described by introducing phase shifts and envelopes in the Fourier plane. In Chapter 4, the elements of an electron-optical column are described: the electron gun, the condenser and the imaging system. A thorough understanding of electron-specimen interactions is essential to explain image contrast.




Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy


Book Description

During the last four decades remarkable developments have taken place in instrumentation and techniques for characterizing the microstructure and microcomposition of materials. Some of the most important of these instruments involve the use of electron beams because of the wealth of information that can be obtained from the interaction of electron beams with matter. The principal instruments include the scanning electron microscope, electron probe x-ray microanalyzer, and the analytical transmission electron microscope. The training of students to use these instruments and to apply the new techniques that are possible with them is an important function, which. has been carried out by formal classes in universities and colleges and by special summer courses such as the ones offered for the past 19 years at Lehigh University. Laboratory work, which should be an integral part of such courses, is often hindered by the lack of a suitable laboratory workbook. While laboratory workbooks for transmission electron microscopy have-been in existence for many years, the broad range of topics that must be dealt with in scanning electron microscopy and microanalysis has made it difficult for instructors to devise meaningful experiments. The present workbook provides a series of fundamental experiments to aid in "hands-on" learning of the use of the instrumentation and the techniques. It is written by a group of eminently qualified scientists and educators. The importance of hands-on learning cannot be overemphasized.




Low-Temperature Microscopy and Analysis


Book Description

The frozen-hydrated specimen is the principal element that unifies the subject of low temperature microscopy, and frozen-hydrated specimens are what this book is all about. Freezing the sample as quickly as possible and then further preparing the specimen for microscopy or microanalysis, whether still embedded in ice or not: there seem to be as many variations on this theme as there are creative scientists with problems of structure and composition to investigate. Yet all share a body of com mon fact and theory upon which their work must be based. Low-Temperature Micros copy and Analysis provides, for the first time, a comprehensive treatment of all the elements to which one needs access. What is the appeal behind the use of frozen-hydrated specimens for biological electron microscopy, and why is it so important that such a book should now have been written? If one cannot observe dynamic events as they are in progress, rapid specimen freezing at least offers the possibility to trap structures, organelles, macro molecules, or ions and other solutes in a form that is identical to what the native structure was like at the moment of trapping. The pursuit of this ideal becomes all the more necessary in electron microscopy because of the enormous increase in resolution that is available with electron-optical instruments, compared to light optical microscopes.