Aerosol Measurement


Book Description

Aerosol Measurement: Principles, Techniques, and Applications Third Edition is the most detailed treatment available of the latest aerosol measurement methods. Drawing on the know-how of numerous expert contributors; it provides a solid grasp of measurement fundamentals and practices a wide variety of aerosol applications. This new edition is updated to address new and developing applications of aerosol measurement, including applications in environmental health, atmospheric science, climate change, air pollution, public health, nanotechnology, particle and powder technology, pharmaceutical research and development, clean room technology (integrated circuit manufacture), and nuclear waste management.




Electron Microprobe Analysis and Scanning Electron Microscopy in Geology


Book Description

Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.




Istfa 2005


Book Description




The Transmission Electron Microscope


Book Description

The book "The Transmission Electron Microscope" contains a collection of research articles submitted by engineers and scientists to present an overview of different aspects of TEM from the basic mechanisms and diagnosis to the latest advancements in the field. The book presents descriptions of electron microscopy, models for improved sample sizing and handling, new methods of image projection, and experimental methodologies for nanomaterials studies. The selection of chapters focuses on transmission electron microscopy used in material characterization, with special emphasis on both the theoretical and experimental aspect of modern electron microscopy techniques. I believe that a broad range of readers, such as students, scientists and engineers will benefit from this book.




Non-destructive Micro Analysis of Cultural Heritage Materials


Book Description

This book provides the scientific and technical background materials of non-destructive methods of microscopic analysis that are suitable for analysing works of art, museum pieces and archeaological artefacts. Written by experts in the field, this multi-author volume contains a number of case studies, illustrating the value of these methods. The book is suited to natural scientists and analysts looking to increase their knowledge of the various methods that are currently available for non-destructive analysis. It is also the perfect resource for museum curators, archaeologists and art-historians seeking to identify one or more suitable methods of analysis that could solve material-related problems.




Microscopy of Semiconducting Materials


Book Description

The 14th conference in the series focused on the most recent advances in the study of the structural and electronic properties of semiconducting materials by the application of transmission and scanning electron microscopy. The latest developments in the use of other important microcharacterisation techniques were also covered and included the latest work using scanning probe microscopy and also X-ray topography and diffraction.




Advances in Imaging and Electron Physics


Book Description

Advances in Imaging and Electron Physics merges two long-running serials—Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contributions from leading authorities - Informs and updates on all the latest developments in the field




Nanostructure Control of Materials


Book Description

The ability to measure and manipulate matter on the nanometer level is making possible a new generation of materials with enhanced mechanical, optical, transport and magnetic properties. This important book summarises key developments in nanotechnology and their impact on the processing of metals, polymers, composites and ceramics.After a brief introduction, a number of chapters discuss the practical issues involved in the commercial production and use of nanomaterials. Other chapters review ways of nanoengineering steel, aluminium and titanium alloys. Elsewhere the book discusses the use of nanoengineered metal hydrides to store hydrogen as an energy source, and the development of nanopolymers for batteries and other energy storage devices. Other chapters discuss the use of nanotechnology to enhance the toughness of ceramics, the production of synthetic versions of natural materials such as bone, and the development of nanocomposites.Nanostructure control of materials is an ideal introduction to the ways nanotechnology is being used to create new materials for industry. It will be welcomed by R&D managers in such sectors as automotive engineering as well as academics working in this exciting area. - Reviews key developments in nanotechnology and their impact on various materials - Edited by leading experts in the field




A Practical Guide to Microstructural Analysis of Cementitious Materials


Book Description

A Practical Guide from Top-Level Industry Scientists As advanced teaching and training in the development of cementitious materials increase, the need has emerged for an up-to-date practical guide to the field suitable for graduate students and junior and general practitioners. Get the Best Use of Different Techniques and Interpretations of the Results This edited volume provides the cement science community with a state-of-the-art overview of analytical techniques used in cement chemistry to study the hydration and microstructure of cements. Each chapter focuses on a specific technique, not only describing the basic principles behind the technique, but also providing essential, practical details on its application to the study of cement hydration. Each chapter sets out present best practice, and draws attention to the limitations and potential experimental pitfalls of the technique. Databases that supply examples and that support the analysis and interpretation of the experimental results strengthen a very valuable ready reference. Utilizing the day-to-day experience of practical experts in the field, this book: Covers sample preparation issues Discusses commonly used techniques for identifying and quantifying the phases making up cementitious materials (X-ray diffraction and thermogravimetric analysis) Presents good practice oncalorimetry and chemical shrinkage methods for studying cement hydration kinetics Examines two different applications of nuclear magnetic resonance (solid state NMR and proton relaxometry) Takes a look at electron microscopy, the preeminent microstructural characterization technique for cementitious materials Explains how to use and interpret mercury intrusion porosimetry Details techniques for powder characterization of cementitious materials Outlines the practical application of phase diagrams for hydrated cements Avoid common pitfalls by using A Practical Guide to Microstructural Analysis of Cementitious Materials. A one-of-a-kind reference providing the do’s and don’ts of cement chemistry, the book presents the latest research and development of characterisation techniques for cementitious materials, and serves as an invaluable resource for practicing professionals specializing in cement and concrete materials and other areas of cement and concrete technology.