Ultra-High Temperature Ceramics


Book Description

The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.




Ceramic Microstructures


Book Description

This volume, titled Proceedings of the International Materials Symposium on Ce ramic Microstructures: Control at the Atomic Level summarizes the progress that has been achieved during the past decade in understanding and controlling microstructures in ceram ics. A particular emphasis of the symposium, and therefore of this volume, is advances in the characterization, understanding, and control of micro structures at the atomic or near-atomic level. This symposium is the fourth in a series of meetings, held every ten years, devoted to ceramic microstructures. The inaugural meeting took place in 1966, and focussed on the analysis, significance, and production of microstructure; the symposium emphasized the need for, and importance of characterization in achieving a more complete understanding of the physical and chemical characteristics of ceramics. A consensus emerged at that meeting on the critical importance of characterization in achieving a more complete understanding of ceramic properties. That point of view became widely accepted in the ensuing decade. The second meeting took place in 1976 at a time of world-wide energy shortages and thus emphasized energy-related applications of ceramics, and more specifically, microstructure-property relationships of those materials. The third meeting, held in 1986, was devoted to the role that interfaces played both during processing, and in influencing the ultimate properties of single and polyphase ceramics, and ceramic-metal systems.




MAX Phases and Ultra-high Temperature Ceramics for Extreme Environments


Book Description

"This book investigates a new class of ultra-durable ceramic materials, which exhibit characteristics of both ceramics and metals, and will explore recent advances in the manufacturing of ceramic materials that improve their durability and other physical properties, enhancing their overall usability and cost-effectiveness"--




MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments


Book Description

Ceramics are a versatile material, more so than is widely known. They are thermal resistant, poor electrical conductors, insulators against nuclear radiation, and not easily damaged, making ceramics a key component in many industrial processes. MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments investigates a new class of ultra-durable ceramic materials, which exhibit characteristics of both ceramics and metals. Readers will explore recent advances in the manufacturing of ceramic materials that improve their durability and other physical properties, enhancing their overall usability and cost-effectiveness. This book will be of primary use to researchers, academics, and practitioners in chemical, mechanical, and electrical engineering. This book is part of the Research Essentials collection.




Ceramic Microstructures


Book Description

This text deals with the effect of processing on the microstructure and properties of advanced structural and electroceramic materials. It fulfils the need for a well illustrated book explaining the relation between microstructure and properties in structural ceramics, featuring high quality micrographs and characterization techniques.




Advanced Ceramic Coatings and Materials for Extreme Environments II, Volume 33, Issue 3


Book Description

Exploring advanced ceramic coatings and ultra-high temperature ceramic materials, this issue brings readers up-to-date with important new and emerging findings, materials, and applications. The nineteen papers in this issue originate from two symposia and one focused session held in January 2012, during the 36th International Conference on Advanced Ceramics and Composites (ICACC). With contributions from leading ceramics and materials researchers from around the world, this issue explores the latest advances and key challenges in advanced thermal and environmental coating processing and characterizations, advanced wear corrosion-resistant, nanocomposite, and multi-functional coatings, thermal protection systems, and more.




Ultra High Temperature Ceramics for Hypersonic Vehicle Applications


Book Description

HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.




High Temperature Ceramic Matrix Composites 8


Book Description

This proceedings contains 78 papers from the 8th International Conference on High Temperature Ceramic Matrix Composites, held September 22-26, 2013 in Xi'an, Shaanxi, China. Chapters include: Ceramic Genome, Computational Modeling, and Design Advanced Ceramic Fibers, Interfaces, and Interphases Nanocomposite Materials and Systems Polymer Derived Ceramics and Composites Fiber Reinforced Ceramic MatrixComposites Carbon-Carbon Composites: Materials, Systems, and Applications Ultra High Temperature Ceramics and MAX Phase Materials Thermal and Environmental Barrier Coatings