Plasticity


Book Description

Explores the Principles of Plasticity Most undergraduate programs lack an undergraduate plasticity theory course, and many graduate programs in design and manufacturing lack a course on plasticity—leaving a number of engineering students without adequate information on the subject. Emphasizing stresses generated in the material and its effect, Plasticity: Fundamentals and Applications effectively addresses this need. This book fills a void by introducing the basic fundamentals of solid mechanics of deformable bodies. It provides a thorough understanding of plasticity theory, introduces the concepts of plasticity, and discusses relevant applications. Studies the Effects of Forces and Motions on Solids The authors make a point of highlighting the importance of plastic deformation, and also discuss the concepts of elasticity (for a clear understanding of plasticity, the elasticity theory must also be understood). In addition, they present information on updated Lagrangian and Eulerian formulations for the modeling of metal forming and machining. Topics covered include: Stress Strain Constitutive relations Fracture Anisotropy Contact problems Plasticity: Fundamentals and Applications enables students to understand the basic fundamentals of plasticity theory, effectively use commercial finite-element (FE) software, and eventually develop their own code. It also provides suitable reference material for mechanical/civil/aerospace engineers, material processing engineers, applied mechanics researchers, mathematicians, and other industry professionals.




Material Science and Engineering


Book Description

Material Science and Engineering presents novel and fundamental advances in the field of material science and engineering. This proceedings collects the comprehensive and worldwide research results on Metallic Materials and Applications, Chemical Materials, Electronic Materials, Nanomaterials, Composite and Polymer Materials, Bio and Medical Materi




Engineering Tribology


Book Description

As with the previous edition, the third edition of Engineering Tribology provides a thorough understanding of friction and wear using technologies such as lubrication and special materials. Tribology is a complex topic with its own terminology and specialized concepts, yet is vitally important throughout all engineering disciplines, including mechanical design, aerodynamics, fluid dynamics and biomedical engineering. This edition includes updated material on the hydrodynamic aspects of tribology as well as new advances in the field of biotribology, with a focus throughout on the engineering applications of tribology.This book offers an extensive range if illustrations which communicate the basic concepts of tribology in engineering better than text alone. All chapters include an extensive list of references and citations to facilitate further in-depth research and thorough navigation through particular subjects covered in each chapter. - Includes newly devised end-of-chapter problems - Provides a comprehensive overview of the mechanisms of wear, lubrication and friction in an accessible manner designed to aid non-specialists - Gives a reader-friendly approach to the subject using a graphic illustrative method to break down the typically complex problems associated with tribology




Microstructure and Wear of Materials


Book Description

This new book will be useful not only to practising engineers and scientists, but also to advanced students interested in wear. It reviews our current understanding of the influence of microstructural elements and physical properties of materials (metals, polymers, ceramics and composites) on wear.The introductory chapters describe the relation between microstructure and mechanical properties of materials, surfaces in contact and the classification of wear processes. The following chapters are concerned with wear modes of great practical interest such as grooving wear, sliding wear, rolling-sliding wear and erosive wear. Our present understanding of abrasion, adhesion, surface fatigue and tribochemical reactions as the relevant wear mechanisms is discussed, and new wear models are presented. In addition to extensive experimental results, sketches have been widely used for clarifying the physical events.




Bainite in Steels


Book Description

The second edition of this modern classic encompasses the latest research, which sees bainitic alloys at the forefront of a new wave of "designed" steels. Contents include: Nomenclature; Introduction; Bainitic Ferrite; Carbide Precipitation; Tempering of Bainite; Thermodynamics; Kinetics; Upper and Lower Bainite; Stress and Strain Effects; Reverse Transformation from Bainite to Austenite; Acicular Ferrite; Other Morphologies of Bainite; Mechanical Properties; Modern Bainitic Alloys;Other Aspects; The Transformation of Steel.