Microwave and Radio Frequency Heating in Food and Beverages


Book Description

Microwave and Radio Frequency Heating in Food and Beverages discusses advanced heating techniques based on electromagnetic and electro-technologies, including radiative or microwave (MW) dielectric heating, radio-frequency (RF) or capacitive dielectric heating, infrared (IR) heating, ohmic and magnetic induction heating. Unlike conventional systems where heat energy is transferred from a hot medium to a cooler product resulting in large temperature gradients, electro-heating involves the transfer of electromagnetic energy directly into the product, initiating volumetric heating due to frictional interaction between water molecules and charged ions (i.e., heat is generated within the product). - Provides basic principles and mechanisms of electromagnetic heating and microwave - Explores microwave and radio-frequency (RF) effects on quality and nutrients in foods - Presents the commercial applications of microwave and RF heating in the pasteurization and sterilization of foods and beverages




Radio-Frequency Heating in Food Processing


Book Description

Radio-Frequency Heating in Food Processing: Principles and Applications covers the fundamentals of radio-frequency (RF) heating and the use of RF-heating technologies in modern food processing, preservation, and related industries. Focusing on industrial and lab-scale applications where RF heating has been employed successfully or reported to have




Electromagnetic Technologies in Food Science


Book Description

A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.




Advances In Bio-processing Engineering


Book Description

This book consists of peer-reviewed articles reporting on the latest developments in several food engineering and agricultural processing laboratories at US land-granted universities. The contributors are leading experts in their respective fields.The topics covered in the book include new food processing technologies (such as high voltage electric field processing and microwave sterilization/pasteurization), conversion of agricultural by-products into high quality refined cellulose or biodegradable plastics, and advances in machine vision inspection and sorting techniques for fruit and vegetable packaging lines. Each chapter begins with a general background review with important references, and ends with the latest results from each research laboratory.




The Microwave Processing of Foods


Book Description

The Microwave Processing of Foods, Second Edition, has been updated and extended to include the many developments that have taken place over the past 10 years. Including new chapters on microwave assisted frying, microwave assisted microbial inactivation, microwave assisted disinfestation, this book continues to provide the basic principles for microwave technology, while also presenting current and emerging research trends for future use development. Led by an international team of experts, this book will serve as a practical guide for those interested in applying microwave technology. - Provides thoroughly up-to-date information on the basics of microwaves and microwave heating - Discusses the main factors for the successful application of microwaves and the main problems that may arise - Includes current and potential future applications for real-world application as well as new research and advances - Includes new chapters on microwave-assisted frying, microbial inactivation, and disinfestation




New Methods of Food Preservation


Book Description




Advances in Microwave and Radio Frequency Processing


Book Description

Prometheus brought fire to mankind Arthur R. von Hippel “Dielectrics and Waves”, 1954 Our contribution? There are only few areas of research and development of a comparable scientific and technological extension as microwave and high frequency processing. “Pr- essing” means not only application of radiation of 300 MHz to 300 GHz f- quency to synthesis, heating or ionisation of matter but also generation, transm- sion and detection of microwave and radio frequency radiation. Microwave and high frequency sources positioned in the orbit are the foun- tion of modern satellite telecommunication systems, gyrotron tubes being pr- ently developed in different countries all over the world will most probably be the major devices to open up a new era of energy supply to mankind be means of - sion plasma. Although initiated by military purposes during the Second World War (RADAR, Radio Detection and Ranging), microwave and high frequency utilisation has spread over almost every important aspect of normal day life since than, from individual mobile phones and kitchen microwave ovens to industrial food processing, production of composites as sustainable building materials, green chemistry, medical applications and finally infrastructure installations like GPS and Galileo, to name only few examples. These different areas of microwave and high frequency radiation application can not be unified within one group of scientists and technologists. There are s- eral distinguished communities active e.g., in the area of telecommunication s- tems, strong microwaves for fusion plasma or plasma based materials processing.




Ohmic Heating in Food Processing


Book Description

Ohmic heating provides rapid and uniform heating, resulting in less thermal damage than conventional heating and allowing manufacturers to obtain high-quality products with minimum sensorial, nutritional, and structural changes. Ohmic Heating in Food Processing covers several aspects of Ohmic heating: science and engineering, chemistry and physics,




Microwave and Radio-Frequency Technologies in Agriculture


Book Description

Humanity's ability to produce enough food is mostly due to adoption of new methods and technologies by the agricultural industries as they became available. New information, communication and high speed processing and precision agriculture technologies have the potential to transform the agricultural industry. These technologies incorporate radio-frequency and microwave radiation into their systems. This book presents an overview of how these technologies are being used in agricultural systems. The main purpose of the book is to provide a glimpse of what is possible and encourage practitioners in the engineering and agricultural industries to explore how radio-frequency and microwave systems might further enhance the agricultural industry. The authors have extensive experience in agricultural and microwave engineering, instrumentation and communication systems.




Innovative Technologies in Beverage Processing


Book Description

An in-depth look at new and emerging technologies for non-alcoholic beverage manufacturing The non-alcoholic beverage market is the fastest growing segment of the functional food industry worldwide. Consistent with beverage consumption trends generally, the demand among consumers of these products is for high-nutrient drinks made from natural, healthy ingredients, free of synthetic preservatives and artificial flavor and color enhancers. Such drinks require specialized knowledge of exotic ingredients, novel processing techniques, and various functional ingredients. The latest addition to the critically acclaimed IFST Advances in Food Science series this book brings together edited contributions from internationally recognized experts in their fields who offer insights and analysis of the latest developments in non-alcoholic beverage manufacture. Topics covered include juices made from pome fruits, citrus fruits, prunus fruits, vegetables, exotic fruits, berries, juice blends and non-alcoholic beverages, including grain-based beverages, soups and functional beverages. Waste and by-products generated in juice and non-alcoholic beverage sector are also addressed. Offers fresh insight and analysis of the latest developments in non-alcoholic beverage manufacture from leading international experts Covers all product segments of the non-alcoholic beverage market, including juices, vegetable blends, grain-based drinks, and alternative beverages Details novel thermal and non-thermal technologies that ensure high-quality nutrient retention while extending product shelf life Written with the full support of The Institute of Food Science and Technology (IFST), the leading qualifying body for food professionals in Europe Innovative Technologies in Beverage Processing is a valuable reference/working resource for food scientists and engineers working in the non-alcoholic beverage industry, as well as academic researchers in industrial food processing and nutrition.