Microwave Circuit Modeling Using Electromagnetic Field Simulation


Book Description

Annotation This practical "how to" book is an ideal introduction to electromagnetic field-solvers. Where most books in this area are strictly theoretical, this unique resource provides engineers with helpful advice on selecting the right tools for their RF (radio frequency) and high-speed digital circuit design work







2-D Electromagnetic Simulation of Passive Microstrip Circuits


Book Description

Global Demand for Streamlined Design and Computation The explosion of wireless communications has generated a tidal wave of interest and development in computational techniques for electromagnetic simulation as well as the design and analysis of RF and microwave circuits. Learn About Emerging Disciplines, State-of-the-Art Methods 2-D Electromagnetic Simulation of Passive Microstrip Circuits describes this simple procedure in order to provide basic knowledge and practical insight into quotidian problems of microstrip passive circuits applied to microwave systems and digital technologies. The text dissects the latest emerging disciplines and methods of microwave circuit analysis, carefully balancing theory and state-of-the-art experimental concepts to elucidate the process of analyzing high-speed circuits. The author covers the newer techniques – such as the study of signal integrity within circuits, and the use of field map interpretations – employed in powerful electromagnetic simulation analysis methods. But why and how does the intrinsic two-dimensional simulation model used here reduce numerical error? Step-by-Step Simulation Provides Insight and Understanding The author presents the FDTD electromagnetic simulation method, used to reproduce different microstrip test circuits, as well as an explanation of the complementary electrostatic method of moments (MoM). Each reproduces different microstrip test circuits that are physically constructed and then studied, using a natural methodological progression to facilitate understanding. This approach gives readers a solid comprehension and insight into the theory and practical applications of the microstrip scenario, with emphasis on high-speed interconnection elements.




Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation


Book Description

This book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated with the weakly nonlinear relationship between feature point coordinates and design variables, which—in the context of optimization—leads to inherent regularization of the objective functions. The book provides an overview of the subject, a definition and extraction of characteristic points, and feature-based design problem reformulation. It also outlines a number of numerical algorithms developed to handle local, global, and multi-criterial design, surrogate modeling, as well as uncertainty quantification. The discussed frameworks are extensively illustrated using examples of real microwave and antenna structures, along with numerous design cases. Introductory material on simulation-driven design, numerical optimization, as well as behavioral and physics-based surrogate modeling is also included. The book will be useful for readers working in the area of high-frequency electronics, including microwave engineering, antenna design, microwave photonics, magnetism and especially those who utilize electromagnetic (EM) simulation models in their daily routines.




Microwave and RF Semiconductor Control Device Modeling


Book Description

This comprehensive new resource presents a detailed look at the modeling and simulation of microwave semiconductor control devices and circuits. Fundamental PIN, MOSFET, and MESFET nonlinear device modeling are discussed, including the analysis of transient and harmonic behavior. Considering various control circuit topologies, the book analyzes a wide range of models, from simple approximations, to sophisticated analytical approaches. Readers find clear examples that provide guidance in how to use specific modeling techniques for their challenging projects in the field. Numerous illustrations help practitioners better understand important device and circuit behavior, revealing the relationship between key parameters and results. This authoritative volume covers basic and complex mathematical models for the most common semiconductor control elements used in today’s microwave and RF circuits and systems.




Intermodulation Distortion in Microwave and Wireless Circuits


Book Description

In today's fast-changing, competitive environment, having an up-to-date information system (IS) is critical for all companies and institutions. Rather than creating a new system from scratch, reengineering is an economical way to develop an IS to match changing business needs. Using detailed examples, this practical book gives you methods and techniques for reengineering systems for flexibility and reliability. It helps you reengineer a system to continue to provide for business critical missions as well as achieve a smooth transformation to an up-to-date software technology environment. What's more, it shows you how to redevelop a flexible system that can evolve to meet future business objectives, reduce start time and save money in the reengineering process.




Introduction To Modern Planar Transmission Lines


Book Description

Provides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial realization and circuit models. Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study Introduction to Modern Planar Transmission Lines is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.




Lumped Elements for RF and Microwave Circuits


Book Description

Annotation Due to the unprecedented growth in wireless applications over the past decade, development of low-cost solutions for RF and microwave communication systems has become of great importance. This practical new book is the first comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The books offers you an in-depth understanding of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers.




Microwave Network Design Using the Scattering Matrix


Book Description

This authoritative resource provides you with comprehensive and detailed coverage of the wave approach to microwave network characterization, analysis, and design using scattering parameters. For the first time in any book, all aspects and approaches to wave variables and the scattering matrix are explored. The book compares and contrasts voltage waves, travelling waves, pseudo waves, and power waves, and explains the differences between real scattering parameters, pseudo scattering parameters, and power scattering parameters. You find important discussions on standard scattering matrices and wave quantities, mixed mode wave variables, and noise wave variables with noise wave correlation matrices. Moreover, the book presents clear methods for standard single ended multiport network design and noise analysis. This in-depth reference is packed with over 1,100 equations and numerous illustrations.




Microwave Circulator Design, Second Edition


Book Description

Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.