Microwave Engineering and Systems Applications


Book Description

Systems. Microwave transmission, control, detection, and generation. Microwave measurements. Microwave subsystems.







RF/Microwave Engineering and Applications in Energy Systems


Book Description

RF/MICROWAVE ENGINEERING AND APPLICATIONS IN ENERGY SYSTEMS An essential text with a unique focus on RF and microwave engineering theory and its applications In RF/Microwave Engineering and Applications in Energy Systems, accomplished researcher Abdullah Eroglu delivers a detailed treatment of key theoretical aspects of radio-frequency and microwave engineering concepts along with parallel presentations of their practical applications. The text includes coverage of recent advances in the subject, including energy harvesting methods, RFID antenna designs, HVAC system controls, and smart grids. The distinguished author provides step-by-step solutions to common engineering problems by way of numerous examples and offers end-of-chapter problems and solutions on each topic. These practical applications of theoretical subjects aid the reader with retention and recall and demonstrate a solid connection between theory and practice. The author also applies common simulation tools in several chapters, illustrating the use and implementation of time domain circuit simulators in conjunction with electromagnetic simulators, as well as Matlab for design, simulation, and implementation at the component and system levels. Readers will also benefit from: A thorough introduction to the foundations of electromagnetics, including line, surface, and volume integrals, vector operation and theorems, and Maxwell’s equations Comprehensive explorations of passive and active components in RF and microwave engineering, including resistors, capacitors, inductors, and semiconductor materials and active devices Practical discussions of transmission lines, including transmission line analysis, Smith charts, microstrip lines, and striplines In-depth examinations of network parameters, including impedance parameters, ABCD parameters, h-Hybrid parameters, and network connections Perfect for senior-level undergraduates and graduate students studying RF or Microwave engineering, RF/Microwave Engineering and Applications in Energy Systems is also an indispensable resource for professionals whose work touches on radio-frequency and microwave technologies.




Microwave Systems and Applications


Book Description

Microwave systems are key components of every modern wireless communication system. The main objective of this book was to collect as many different state-of-the-art studies as possible in order to cover in a single volume the main aspects of microwave systems and applications. This book contains 17 chapters written by acknowledged experts, researchers, academics, and microwave engineers, providing comprehensive information and covering a wide range of topics on all aspects of microwave systems and applications. This book is divided into four parts. The first part is devoted to microwave components. The second part deals with microwave ICs and innovative techniques for on-chip antenna design. The third part presents antenna design cases for microwave systems. Finally, the last part covers different applications of microwave systems.




Novel Technologies for Microwave and Millimeter — Wave Applications


Book Description

Novel Technologies for Microwave and Millimeter-Wave Applications provides an overview of current research status in selected field, to facilitate a learning process from concepts to practices, from component design to system architecture, and from small scale to large scale. Each chapter focuses on a topic and is organized to be self-sufficient. Contents in each chapter include concise description of relevant background information, major issues, current trend and future challenges. Useful references are also listed for further reading. Novel Technologies for Microwave and Millimeter-Wave Applications is suitable as a textbook for senior or graduate courses in microwave engineering.




Microwave Engineering


Book Description

Pozar's new edition of Microwave Engineering includes more material on active circuits, noise, nonlinear effects, and wireless systems. Chapters on noise and nonlinear distortion, and active devices have been added along with the coverage of noise and more material on intermodulation distortion and related nonlinear effects. On active devices, there's more updated material on bipolar junction and field effect transistors. New and updated material on wireless communications systems, including link budget, link margin, digital modulation methods, and bit error rates is also part of the new edition. Other new material includes a section on transients on transmission lines, the theory of power waves, a discussion of higher order modes and frequency effects for microstrip line, and a discussion of how to determine unloaded.




Principles and Applications of RF/Microwave in Healthcare and Biosensing


Book Description

This reference, written by leading authorities in the field, gives basic theory, implementation details, advanced research, and applications of RF and microwave in healthcare and biosensing. It first provides a solid understanding of the fundamentals with coverage of the basics of microwave engineering and the interaction between electromagnetic waves and biomaterials. It then presents the state-of-the-art development in microwave biosensing, implantable devices -including applications of microwave technology for sensing biological tissues – and medical diagnosis, along with applications involving remote patient monitoring. this book is an ideal reference for RF and microwave engineer working on, or thinking of working on, the applications of RF and Microwave technology in medicine and biology. Learn: The fundamentals of RF and microwave engineering in healthcare and biosensing How to combine biological and medical aspects of the field with underlying engineering concepts How to implement microwave biosensing for material characterization and cancer diagnosis Applications and functioning of wireless implantable biomedical devices and microwave non-contact biomedical radars How to combine devices, systems, and methods for new practical applications The first book to review the fundamentals, latest developments, and future trends in this important emerging field with emphasis on engineering aspects of sensing, monitoring, and diagnosis using RF and Microwave Extensive coverage of biosensing applications are included Written by leaders in the field, including members of the Technical Coordinating Committee of the Biological Effects and Medical Applications of the IEEE Microwave Theory and Techniques Society




Microwave Engineering Handbook: Microwave circuits, antennas, and propagation


Book Description

This second volume of the three-volume complete reference on microwave engineering covers all of the major circuit types used in microwave systems, and also covers antennas and propagation, an area vital to microwave systems. The emphasis is on fundamental principles and practical hardware, providing a wealth of information for engineers and system designers. Annotation copyright by Book News, Inc., Portland, OR




Microwave Engineering


Book Description

Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits Addresses scattering parameters and their properties, as well as planar structures including striplines and microstrips Considers the limitations of conventional tubes, behavior of charged particles in different fields, and the concept of velocity modulation Based on the author’s own class notes, Microwave Engineering: Concepts and Fundamentals consists of 16 chapters featuring homework problems, references, and numerical examples. PowerPoint® slides and MATLAB®-based solutions are available with qualifying course adoption.




Digital Microwave Communication


Book Description

The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all engineering aspects of microwave communications in the digital age. This important new work provides readers with the depth of knowledge necessary for all the system engineering details associated with fixed point-to-point microwave radio path design: the why, what, and how of microwave transmission; design objectives; engineering methodologies; and design philosophy (in the bid, design, and acceptance phase of the project). Written in an easily accessible format, Digital Microwave Communication features an appendix of specialized engineering details and formulas, and offers up chapter coverage of: A Brief History of Microwave Radio Microwave Radio Overview System Components Hypothetical Reference Circuits Multipath Fading Rain Fading Reflections and Obstructions Network Reliability Calculations Regulation of Microwave Radio Networks Radio Network Performance Objectives Designing and Operating Microwave Systems Antennas Radio Diversity Ducting and Obstruction Fading Digital Receiver Interference Path Performance Calculations Digital Microwave Communication: Engineering Point-to-Point Microwave Systems will be of great interest to engineers and managers who specify, design, or evaluate fixed point-to-point microwave systems associated with communications systems and equipment manufacturers, independent and university research organizations, government agencies, telecommunications services, and other users.