Introduction to RF and Microwave Passive Components


Book Description

This authoritative new resource provides an overview and introduction to working with RF, microwave, and high frequency components. From transmission lines, antennas, millimeter waves, ferrites, hybrids, power dividers and filters, this book focuses on practical, time-to-market issues to help with projects in the field. Keeping mathematics to a minimum, this comprehensive volume is packed with over 700 illustrations that help clarify key concepts. The reader will gain an in-depth understanding of the special characteristics exploited in microwave and high frequency design. The book is also used in industrial training courses.




Passive Microwave Components and Antennas


Book Description

Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation of complex electromagnetic problems. The first part of this book is devoted to the advances in the analysis techniques such as method of moments, finite-difference time- domain method, boundary perturbation theory, Fourier analysis, mode-matching method, and analysis based on circuit theory. These techniques are considered with regard to several challenging technological applications such as those related to electrically large devices, scattering in layered structures, photonic crystals, and artificial materials. The second part of the book deals with waveguides, transmission lines and transitions. This includes microstrip lines (MSL), slot waveguides, substrate integrated waveguides (SIW), vertical transmission lines in multilayer media as well as MSL to SIW and MSL to slot line transitions.




RF and Microwave Passive and Active Technologies


Book Description

In the high frequency world, the passive technologies required to realize RF and microwave functionality present distinctive challenges. SAW filters, dielectric resonators, MEMS, and waveguide do not have counterparts in the low frequency or digital environment. Even when conventional lumped components can be used in high frequency applications, their behavior does not resemble that observed at lower frequencies. RF and Microwave Passive and Active Technologies provides detailed information about a wide range of component technologies used in modern RF and microwave systems. Updated chapters include new material on such technologies as MEMS, device packaging, surface acoustic wave (SAW) filters, bipolar junction and heterojunction transistors, and high mobility electron transistors (HMETs). The book also features a completely rewritten section on wide bandgap transistors.




Passive RF and Microwave Integrated Circuits


Book Description

The growth in RF and wireless/mobile computing devices that operate at microwave frequencies has resulted in explosive demand for integrated circuits capable of operating at such frequencies in order to accomplish functions like frequency division, phase shifting, attenuation, and isolators and circulators for antennas. This book is an introduction to such ICs, combining theory and practical applications of those devices. In addition to this combined theory and application approach, the author discusses the critical importance of differing fabrication materials on the performance of ICs at different frequencies. This is an area often overlooked when choosing ICs for RF and microwave applications, yet it can be a crucial factor in how an IC performs in a given application. - Gives reader a solid background in an increasingly important area of circuit design - Emphasis on combination of theoretical discussions with practical application examples - In-depth discussion of critical, but often overlooked topic of different fabrication material performances at varying frequencies




RF and Microwave Wireless Systems


Book Description

A comprehensive introduction to the hardware, parameters, and architectures of RF/microwave wireless systems As the basis for some of the hottest technologies of the new millennium, radio frequency (RF) and microwave wireless systems rapidly propel us toward a future in which the transmission of voice, video, and data communications will be possible anywhere in the world through the use of simple, handheld devices. This book provides scientists and engineers with clear, thorough, up-to-date explanations of all aspects of RF and microwave wireless systems, including general hardware components, system parameters, and architectures. Renowned authority Kai Chang covers both communication and radar/sensor systems and extends the discussion to other intriguing topics, from global positioning systems (GPS) to smart highways and smart automobiles. With an emphasis on basic operating principles, Dr. Chang reviews waves and transmission lines, examines modulation and demodulation and multiple-access techniques, and helps bridge the gap between RF/microwave engineering and communication system design. Ample practical examples of components and system configurations and nearly 300 illustrations and photographs complete this timely and indispensable resource.




Microwaves : Introduction To Circuits,Devices And Antennas


Book Description

This Book Is Intended As An Introductory Text On Microwave Circuits, Devices And Antennas. It Can Be Used Not Only By The Students Of Physics And Engineering At The Graduate And The Postgraduate Levels, But Also By Practising Engineers, Technicians And Research Workers In The Area Of Microwaves. It Contains Comprehensive Up-To-Date Text For A Standard Course On Transmission Lines, Guided Waves, Passive Components (Including Ferrite Devices), Periodic Structures And Filters, Microwave Vacuum Tubes, Solid State Devices And Their Applications, Strip-Lines, Mics And Antennas. It Also Includes Microwave Measurements At Length. The Written Text Is Supplemented With A Large Number Of Suitable Diagrams And A Good Number Of Solved Examples For Reinforcing The Key Aspects. Each Chapter Has A Select Bibliography/References And Good Number Of Problems And Review Questions At The End.




Handbook of Microwave Component Measurements


Book Description

Handbook of Microwave Component Measurements Second Edition is a fully updated, complete reference to this topic, focusing on the modern measurement tools, such as a Vector Network Analyzer (VNA), gathering in one place all the concepts, formulas, and best practices of measurement science. It includes basic concepts in each chapter as well as appendices which provide all the detail needed to understand the science behind microwave measurements. The book offers an insight into the best practices for ascertaining the true nature of the device-under-test (DUT), optimizing the time to setup and measure, and to the greatest extent possible, remove the effects of the measuring equipment from that result. Furthermore, the author writes with a simplicity that is easily accessible to the student or new engineer, yet is thorough enough to provide details of measurement science for even the most advanced applications and researchers. This welcome new edition brings forward the most modern techniques used in industry today, and recognizes that more new techniques have developed since the first edition published in 2012. Whilst still focusing on the VNA, these techniques are also compatible with other vendor's advanced equipment, providing a comprehensive industry reference.




Microwave Passive Direction Finding


Book Description

Microwave Passive Direction Finding unifies direction finding (DF) theory and brings together into a single source wide-ranging information on the technology of measuring the direction-of-arrival of microwave signals. Throughout the material, there is authoritative information useful to preparing a detailed technical proposal for new business that has been compiled from many years of defense industry presentations, reports, and systems development. Diagrams and photographs of state-of-the-art equipment depict the methods discussed, and equations and charts facilitate a "hands-on" approach to calculating system performance. The book also presents rarely published systems concepts, such as digital preprocessing, supercommutation, and wide RF bandwidth signal detection methods. Specific sections cover evolution and use of monopulse passive DF receiver theory, design of antenna elements for conformal DF coverage, receiver configurations, DF antenna arrays, interferometer DF techniques, computation methods for signal detection, probability of detection, accuracy of DF systems, and signal processing and display methods. More than any book on this technology, Microwave Passive Direction Finding anticipates the questions that arise in the DF design process. The chapters are organized to stand alone, making the book useful as a text/reference for the practicing engineer. At the same time, the material is organized inductively, so that it can be used for a college or seminar text.




Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering


Book Description

If you're looking for a clear, comprehensive overview of basic electromagnetics principles and applications to antenna and microwave circuit design for communications, this authoritative book is your best choice. Including concise explanations of all required mathematical concepts needed to fully comprehend the material, the book is your complete resource for understanding electromagnetics in current, emerging and future broadband communication systems, as well as high-speed analogue and digital electronic circuits and systems.




Planar Microwave Engineering


Book Description

Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and practical measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. There is also a CD-ROM that contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practising engineers.