Microwave Scattering and Emission Models for Users


Book Description

Today, microwave remote sensing has evolved into a valuable and economical tool for a variety of applications. It is used in a wide range of areas, from geological sensing, geographical mapping, and weather monitoring, to GPS positioning, aircraft traffic, and mapping of oil pollution over the sea surface. This unique resource provides microwave remote sensing professionals with practical scattering and emission data models that represent the interaction between electromagnetic waves and a scene on the Earth surface in the microwave region. The book helps engineers understand and apply these models to their specific work in the field. CD-ROM Included! Contains Mathematica code for all the scattering and emission models presented the book, so practitioners can easily use the models for their own applications.




Microwave Scattering and Emission Models and Their Applications


Book Description

"An excellent reference book. Treatment is thorough in terms of starting from some fundamental assumptions and working through the details so the reader may understand both the mathematical derivation and the physical basis for the resulting phase distribution functions (PDFs). [Fung's] discussion of the dependence of the PDF on the scattering parameters and the range of possible values is extremely helpful, and the illustration of the terrain scattering PDF is quite clear."










Electromagnetic Waves


Book Description

This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, and finally, the biological effects and medical applications of electromagnetic fields.







Radar Scattering and Imaging of Rough Surfaces


Book Description

Radar scattering and imaging of rough surfaces is an active interdisciplinary area of research with many practical applications in fields such as mineral and resource exploration, ocean and physical oceanography, military and national defense, planetary exploration, city planning and land use, environmental science, and many more. By focusing on the most advanced analytical and numerical modeling and describing both forward and inverse modeling, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB® connects the scattering process to imaging techniques by vivid examples through numerical and experimental demonstrations and provides computer codes and practical uses. This book is unique in its simultaneous treatment of radar scattering and imaging. Key Features Bridges physical modeling with simulation for resolving radar imaging problems (the first comprehensive work to do so) Provides excellent basic and advanced information for microwave remote-sensing professionals in various fields of science and engineering Covers most advanced analytical and numerical modeling for both backscattering and bistatic scattering Includes MATLAB® codes useful not only for academics but also for radar engineers and scientists to develop tools applicable in different areas of earth studies Covering both the theoretical and the practical, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB® is an invaluable resource for professionals and students using remote sensing to study and explain the Earth and its processes. University and research institutes, electrical and radar engineers, remote-sensing image users, application software developers, students, and academics alike will benefit from this book. The author, Kun-Shan Chen, is an internationally known and respected engineer and scientist and an expert in the field of electromagnetic modeling.




Introduction to Microwave Remote Sensing


Book Description

Introduction to Microwave Remote Sensing offers an extensive overview of this versatile and extremely precise technology for technically oriented undergraduates and graduate students. This textbook emphasizes an important shift in conceptualization and directs it toward students with prior knowledge of optical remote sensing: the author dispels any linkage between microwave and optical remote sensing. Instead, he constructs the concept of microwave remote sensing by comparing it to the process of audio perception, explaining the workings of the ear as a metaphor for microwave instrumentation. This volume takes an “application-driven” approach. Instead of describing the technology and then its uses, this textbook justifies the need for measurement then explains how microwave technology addresses this need. Following a brief summary of the field and a history of the use of microwaves, the book explores the physical properties of microwaves and the polarimetric properties of electromagnetic waves. It examines the interaction of microwaves with matter, analyzes passive atmospheric and passive surface measurements, and describes the operation of altimeters and scatterometers. The textbook concludes by explaining how high resolution images are created using radars, and how techniques of interferometry can be applied to both passive and active sensors.




From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems


Book Description

Remote sensing of the environment is covered through spectroscopic analysis of soil and vegetation response during active and passive sensing. Fundamental aspects of spectroscopic methods for environmental applications are given. Applications range from remote sensing of saline soils, soil moisture detection, landscape evolution, weed detection, fluorescence imaging, and use of vegetation indices to measure ecosystem variables such as plant stress.




Electromagnetics in a Complex World


Book Description

Provides the state of the art of modelling, simulation and calculation methods for electromagnetic fields and waves and their application.