Modern Microwave Transistors


Book Description

Comprehensive and up-to-date coverage of currently used transistors for commercial and military applications. Authors are recognized experts with previous publications. Updated descriptions of state-of-the-art devices available on Wiley Web site.




Fundamentals of RF and Microwave Transistor Amplifiers


Book Description

A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help readers test their basic amplifier and circuit design skills-and more than half of the problems feature fully worked-out solutions. With an emphasis on theory, design, and everyday applications, this book is geared toward students, teachers, scientists, and practicing engineers who are interested in broadening their knowledge of RF and microwave transistor amplifier circuit design.




RF and Microwave Power Amplifier Design


Book Description

This is a rigorous tutorial on radio frequency and microwave power amplifier design, teaching the circuit design techniques that form the microelectronic backbones of modern wireless communications systems. Suitable for self-study, corporate training, or Senior/Graduate classroom use, the book combines analytical calculations and computer-aided design techniques to arm electronic engineers with every possible method to improve their designs and shorten their design time cycles.




RF and Microwave Transistor Oscillator Design


Book Description

The increase of consumer electronics and communications applications using Radio Frequency (RF) and microwave circuits has implications for oscillator design. Applications working at higher frequencies and using novel technologies have led to a demand for more robust circuits with higher performance and functionality, but decreased costs, size and power consumption. As a result, there is also a need for more efficient oscillators. This book presents up to date information on all aspects of oscillator design, enabling a selection of the best oscillator topologies with optimized noise reduction and electrical performance. RF and Microwave Transistor Oscillator Design covers: analyses of non-linear circuit design methods including spectral-domain analysis, time-domain analysis and the quasilinear method; information on noise in oscillators including chapters on varactor and oscillator frequency tuning, CMOS voltage-controlled oscillators and wideband voltage-controlled oscillators; information on the stability of oscillations, with discussions on the stability of multi-resonant circuits and the phase plane method; optimized design and circuit techniques, beginning with the empirical and analytic design approaches, moving on to the high-efficiency design technique; general operation and design principles of oscillators, including a section on the historical aspects of oscillator configurations. A valuable reference for practising RF and Microwave designers and engineers, RF and Microwave Transistor Oscillator Design is also useful for lecturers, advanced students and research and design (R&D) personnel.




Modulated Measurement and Engineering Systems for Microwave Power Transistors


Book Description

The complexity requirements of future wireless communication systems now indeed demand a more general theoretically robust design methodology for nonlinear circuits, such as the power amplifiers. The present design methodology for nonlinear Radio Frequency components and circuits has become a key hindrance in the evaluation, development and testing of modern communication systems. The fundamental nature of this engineering challenge makes it highly unlikely to be addressed within the competitive Radio Frequency industry with short-term profitability, time to market and risk aversion considerations.

The book , therefore, includes developing advanced waveform measurement setups, multi-tone measurement techniques, characterization and modelling of nonlinear distortion in microwave power transistors and design of high-power and spectrum-efficient RF power amplifiers for future wireless communication systems. Further enlists the key impediments in Power Amplifier design through the application of waveform engineering to embrace simultaneously efficiency and linearity objectives of power amplifier design as well as investigate the most robust and appropriate behavioral model formulation that includes memory effects.




Microwave Active Circuit Analysis and Design


Book Description

This book teaches the skills and knowledge required by today's RF and microwave engineer in a concise, structured and systematic way. Reflecting modern developments in the field, this book focuses on active circuit design covering the latest devices and design techniques. From electromagnetic and transmission line theory and S-parameters through to amplifier and oscillator design, techniques for low noise and broadband design; This book focuses on analysis and design including up to date material on MMIC design techniques. With this book you will: - Learn the basics of RF and microwave circuit analysis and design, with an emphasis on active circuits, and become familiar with the operating principles of the most common active system building blocks such as amplifiers, oscillators and mixers - Be able to design transistor-based amplifiers, oscillators and mixers by means of basic design methodologies - Be able to apply established graphical design tools, such as the Smith chart and feedback mappings, to the design RF and microwave active circuits - Acquire a set of basic design skills and useful tools that can be employed without recourse to complex computer aided design - Structured in the form of modular chapters, each covering a specific topic in a concise form suitable for delivery in a single lecture - Emphasis on clear explanation and a step-by-step approach that aims to help students to easily grasp complex concepts - Contains tutorial questions and problems allowing readers to test their knowledge - An accompanying website containing supporting material in the form of slides and software (MATLAB) listings - Unique material on negative resistance oscillator design, noise analysis and three-port design techniques - Covers the latest developments in microwave active circuit design with new approaches that are not covered elsewhere




Practical Microwave Electron Devices


Book Description

Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions. Numerous design examples and case studies are presented throughout the book. For each microwave electron device covered, typical design examples or case studies are presented as well as qualitative or quantitative explanations. The fundamental theory of each device is summarized along with the underlying principles of the design. Each summary is presented so that the design techniques can be applied to other specific cases, designs, and applications. Review questions are included with each chapter to stimulate creative thinking and enhance the acquisition of knowledge and design skills. This book is written for engineers, scientists, and technicians seeking practical knowledge on microwave electron devices and their applications through self-study. It is also suitable for use as a college textbook in upper-division courses for seniors and first-year graduate students in electrical engineering.




Designing Bipolar Transistor Radio Frequency Integrated Circuits


Book Description

If you're looking for an in-depth and up-to-date understanding bipolar transistor RFIC design, this practical resource is a smart choice. Unlike most books on the market that focus on GaAs MESFET or silicon CMOS process technology, this unique volume is dedicated exclusively to RFIC designs based on bipolar technology. Until now, critical GaAs HBT and SiGe HBT process technologies have been largely neglected in reference books. This book fills this gap, offering you a detailed treatment of this increasingly important topic. You discover a wide range of circuit topologies that are optimized for maximum performance with bipolar devices. From discussions of key applications (Bluetooth, UWB, GPS, WiMax) and architectures… to in-depth coverage of fabrication technologies and amplifier design… to a look at performance tradeoffs and production costs, this book arms you with complete design know-how for your challenging work in the field.




Handbook of RF and Microwave Power Amplifiers


Book Description

This is a one-stop guide for circuit designers and system/device engineers, covering everything from CAD to reliability.




Microwave Field-Effect Transistors


Book Description

The following topics are dealt with: GaAs FET theory-small signal; GaAs FET theory-power; requirements and fabrication of GaAs FETs; design of transistor amplifiers; FET mixers; GaAs FET oscillators; FET and IC packaging; FET circuits; gallium arsenide integrated circuits; and other III-V materials and devices