Milestones in Microwave Chemistry


Book Description

This book looks back on thirty-five years of microwave (MW) chemistry and explains how the application of the MW technique became an integral part of R&D, eventually becoming recognized in industry. Further, it details how MW chemistry has undergone a dynamic development in the past three decades, one driven by the advent of increasingly sophisticated professional MW reactors in place of the kitchen MW ovens used in earlier years. A major part of the book shows how substitutions, esterifications, amidations, hydrolyses, alkylations, eliminations, dehydrations, condensations, cyclizations, C–C couplings and the modification of heterocycles can be performed advantageously under MW irradiation, as the reaction times are shorter, while the selectivity and yields are higher; it also explains why in most cases, the reactions can be performed under solvent-free conditions. MW irradiation within the sphere of organophosphorus chemistry is showcased and typical reactions, such as the direct derivatization of phosphinic acids, alkylating esterifications, Diels–Alder reactions, the inverse Wittig-type reaction, fragmentations, the Arbuzov reaction, the synthesis of α-hydroxyphosphonates and α-aminophosphonates (the Kabachnik–Fields condensation), deoxygenations and P–C coupling reactions are described under MW conditions. In closing, the advantages of MW chemistry such as faster reactions and the possibility of simplifying the catalytic systems are addressed.




Microwave Chemistry


Book Description

Microwave Chemistry has changed the way to work in chemical laboratories and is an established state-of-the-art technology to accelarate and enhance chemical processes. This book not only gives an overview of the technology, its historical development and theoretical background, but also presents its exceptionally broad spectrum of applications. Microwave Chemistry enables graduate students and scientist to learn and apply its methods successfully.




Green Extraction of Natural Products


Book Description

Extraction processes are essential steps in numerous industrial applications from perfume over pharmaceutical to fine chemical industry. Nowadays, there are three key aspects in industrial extraction processes: economy and quality, as well as environmental considerations. This book presents a complete picture of current knowledge on green extraction in terms of innovative processes, original methods, alternative solvents and safe products, and provides the necessary theoretical background as well as industrial application examples and environmental impacts. Each chapter is written by experts in the field and the strong focus on green chemistry throughout the book makes this book a unique reference source. This book is intended to be a first step towards a future cooperation in a new extraction of natural products, built to improve both fundamental and green parameters of the techniques and to increase the amount of extracts obtained from renewable resources with a minimum consumption of energy and solvents, and the maximum safety for operators and the environment.




Microwave Assisted Organic Synthesis


Book Description

The first reports on the application of microwaves in organicsynthesis date back to 1986, but it was not until the recentintroduction of specifically designed and constructed equipment,which countered the safety and reproducibility concerns, thatsynthetic application of microwaves has become established as alaboratory technique. Microwave assisted synthesis is now beingadopted in many industrial and academic laboratories to takeadvantage of the novel chemistry that can be carried out using avariety of organic reaction types. This book demonstrates the underlying principles of microwavedielectric heating and, by reference to a range of organic reactiontypes, it's effective use in synthetic organic chemistry. Toillustrate the impact microwave assisted organic synthesis can haveon chemical research, case studies drawn mainly from thepharmaceutical industry are presented.




Advances in Microwave Chemistry


Book Description

Advances in Microwave Chemistry discusses the novel bond formation methodologies, synergistic effects of microwaves with other entities, sample preparation including digestion, combustion, and extraction techniques, as well as selectivity in chemical processes. Recent updates are provided on microwave-assisted syntheses of pharmacologically significant aza-, oxo- and other heterocycles, including lactams, nucleosides, bile acids and sterols, the preparation of nanomaterials, composites, and absorber layer materials for thin film. This book also incorporates comparative discussions involving microwave irradiation with conventional methods in different aspects of organic, inorganic, medicinal, and green chemistry. Key Features: Provides a comparative discussion on microwave irradiation with conventional methods in different aspects of organic, inorganic, medicinal, and green chemistry Presents recent applications of microwave radiation in biocatalysis Offers a complete package correlating various aspects of microwaves in organic syntheses, the biological impact of products formed in reactions, pharmacological features, and environmental sustainability of the procedures Explains microwave-induced reactions on structurally complex bile acids and sterols Stands as a valuable and unique addition to the well-established book series, New Directions in Organic and Biological Chemistry




Synthetic Applications


Book Description

Magnetic nanocatalysts are an important tool for greener catalytic processes due to the ease of their removal from a reaction medium. This book explores different magnetic nanocatalysts, their use in synthesis, and their recyclability. Topics covered include magnetic nanocatalysts for S-S bond formation, N-hetercycle formation, C-heteroatom bond formation, silica-supported catalysts, multicomponent reactions, and their recyclability.




Microwave-assisted Extraction for Bioactive Compounds


Book Description

With increasing energy prices and the drive to reduce CO2 emissions, food industries are challenged to find new technologies in order to reduce energy consumption, to meet legal requirements on emissions, product/process safety and control, and for cost reduction and increased quality as well as functionality. Extraction is one of the promising innovation themes that could contribute to sustainable growth in the chemical and food industries. For example, existing extraction technologies have considerable technological and scientific bottlenecks to overcome, such as often requiring up to 50% of investments in a new plant and more than 70% of total process energy used in food, fine chemicals and pharmaceutical industries. These shortcomings have led to the consideration of the use of new "green" techniques in extraction, which typically use less solvent and energy, such as microwave extraction. Extraction under extreme or non-classical conditions is currently a dynamically developing area in applied research and industry. Using microwaves, extraction and distillation can now be completed in minutes instead of hours with high reproducibility, reducing the consumption of solvent, simplifying manipulation and work-up, giving higher purity of the final product, eliminating post-treatment of waste water and consuming only a fraction of the energy normally needed for a conventional extraction method. Several classes of compounds such as essential oils, aromas, anti-oxidants, pigments, colours, fats and oils, carbohydrates, and other bioactive compounds have been extracted efficiently from a variety of matrices (mainly animal tissues, food, and plant materials). The advantages of using microwave energy, which is a non-contact heat source, includes more effective heating, faster energy transfer, reduced thermal gradients, selective heating, reduced equipment size, faster response to process heating control, faster start-up, increased production, and elimination of process steps. This book will present a complete picture of the current knowledge on microwave-assisted extraction (MAE) of bioactive compounds from food and natural products. It will provide the necessary theoretical background and details about extraction by microwaves, including information on the technique, the mechanism, protocols, industrial applications, safety precautions, and environmental impacts.




Modern Organic Synthesis


Book Description

This book bridges the gap between sophomore and advanced / graduate level organic chemistry courses, providing students with a necessary background to begin research in either an industry or academic environment. • Covers key concepts that include retrosynthesis, conformational analysis, and functional group transformations as well as presents the latest developments in organometallic chemistry and C–C bond formation • Uses a concise and easy-to-read style, with many illustrated examples • Updates material, examples, and references from the first edition • Adds coverage of organocatalysts and organometallic reagents




Microwave Induced Plasma Analytical Spectrometry


Book Description

This book is the most comprehensive publication on MWP technology and MWP-OES analytical spectrometry with an emphasis on practical issues.




Practical Microwave Synthesis for Organic Chemists


Book Description

With the novice user in mind, this beginner's guide explains thebasics behind microwave technology, evaluates available instrumentsand reaction modes, and provides practical hints for everyeventuality. Includes 27 detailed protocols for often-usedreactions. From the contents: 1 Microwave Synthesis - An Introduction 2 Microwave Theory 3 Equipment Review 4 Microwave Processing Techniques 5 Starting With Microwave Chemistry 6 Experimental Protocols 6.1 General Small-Scale Sealed-Vessel Microwave Processing 6.2 Reaction Optimization 6.3 Library Generation 6.4 Reaction Scale-Up 6.5 Special Processing Techniques