Million Dollar Maths


Book Description

Million Dollar Maths is an invaluable guide to the straightforward and outlandish mathematical strategies that can make you rich. ____________ How can you turn $1000 into $1 million? What is the best way to beat the lottery odds? When is the best time to take out a loan? How did one group of gamblers bet on hole-in-ones to win £500,000? How can maths help you set up a successful tech start-up? What about proving the Goldbach Conjecture for $1 million? Learn the techniques for growing your everyday finances, as well as the common mistakes to avoid. Discover the skills, both fair and foul, that offer an additional edge when investing and gambling. And discover why we often misunderstand probability and statistics - with troubling financial costs. From making the most of special offers to utilising the power of exponential growth in your investments; from the art of card counting, to inventing the next Google, Million Dollar Maths is the quintessential primer to the myriad ways maths and finance intersect.




The Ten Equations That Rule the World


Book Description

Is there a secret formula for getting rich? For going viral? For deciding how long to stick with your current job, Netflix series, or even relationship? This book is all about the equations that make our world go round. Ten of them, in fact. They are integral to everything from investment banking to betting companies and social media giants. And they can help you to increase your chance of success, guard against financial loss, live more healthfully, and see through scaremongering. They are known by only the privileged few - until now. With wit and clarity, mathematician David Sumpter shows that it isn't the technical details that make these formulas so successful. It is the way they allow mathematicians to view problems from a different angle - a way of seeing the world that anyone can learn. Empowering and illuminating, The Ten Equations shows how math really can change your life.




The Life-Changing Magic of Numbers


Book Description

If you found maths lessons at school irrelevant and boring, that’s because you didn’t have a teacher like Bobby Seagull. ***As seen on Monkman & Seagull's Genius Guide to Britain*** Long before his rise to cult fandom on University Challenge, Bobby Seagull was obsessed with numbers. They were the keys that unlocked the randomness of football results, the beauty of art and the best way to get things done. In his absorbing book, Bobby tells the story of his life through numbers and shows the incredible ways maths can make sense of the world around us. From magic shows to rap lyrics, from hobbies to outer space, from fitness to food – Bobby’s infectious enthusiasm for numbers will change how you think about almost everything. Told through fascinating stories and insights from Bobby’s life, and with head-scratching puzzles in every chapter, you’ll never look at numbers the same way again.




Prime Obsession


Book Description

In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.




Dr. Riemann's Zeros


Book Description

In 1859 Bernhard Riemann, a shy German mathematician, gave an answer to a problem that had long puzzled mathematicians. Although he couldn't provide a proof, Riemann declared that his solution was 'very probably' true. For the next one hundred and fifty years, the world's mathematicians have longed to confirm the Riemann hypothesis. So great is the interest in its solution that in 2001, an American foundation offered a million-dollar prize to the first person to demonstrate that the hypothesis is correct. In this book, Karl Sabbagh makes accessible even the airiest peaks of maths and paints vivid portraits of the people racing to solve the problem. Dr. Riemann's Zeros is a gripping exploration of the mystery at the heart of our counting system.




The Poincare Conjecture


Book Description

Henri Poincaré was one of the greatest mathematicians of the late nineteenth and early twentieth century. He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincaré conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point. Poincaré's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award. In telling the vibrant story of The Poincaré Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.




Professor Stewart's Cabinet of Mathematical Curiosities


Book Description

School maths is not the interesting part. The real fun is elsewhere. Like a magpie, Ian Stewart has collected the most enlightening, entertaining and vexing 'curiosities' of maths over the years... Now, the private collection is displayed in his cabinet. There are some hidden gems of logic, geometry and probability -- like how to extract a cherry from a cocktail glass (harder than you think), a pop up dodecahedron, the real reason why you can't divide anything by zero and some tips for making money by proving the obvious. Scattered among these are keys to unlocking the mysteries of Fermat's last theorem, the Poincaré Conjecture, chaos theory, and the P/NP problem for which a million dollar prize is on offer. There are beguiling secrets about familiar names like Pythagoras or prime numbers, as well as anecdotes about great mathematicians. Pull out the drawers of the Professor's cabinet and who knows what could happen...




The Millennium Problems


Book Description

In 2000, the Clay Foundation of Cambridge, Massachusetts, announced a historic competition: Whoever could solve any of seven extraordinarily difficult mathematical problems, and have the solution acknowledged as correct by the experts, would receive $1million in prize money. They encompass many of the most fascinating areas of pure and applied mathematics, from topology and number theory to particle physics, cryptography, computing and even aircraft design. Keith Devlin describes here what the seven problems are, how they came about, and what they mean for mathematics and science. In the hands of Devlin, each Millennium Problem becomes a fascinating window onto the deepest questions in the field.




What's Happening in the Mathematical Sciences


Book Description

Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.




Prime Numbers and the Riemann Hypothesis


Book Description

This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.