Minerals at the Nanoscale


Book Description

The editors have gathered in this book, reviews of past and current studies of mineral groups that have played important roles in geology, environmental science and health science. The various chapters cover the application of TEM and related techniques to: mineral groups in which TEM investigations have been extensive and crucial to the understanding of their mineralogy, namely pyriboles, serpentines, clays, micas and other metamorphic phyllosilicates, oxides and oxyhydroxides, sulfides and carbonates. Some research fields for which TEM is particularly suitable and which have produced significant advances, in particular, are inclusions and traces, extraterrestrial material, deformation processes, non-stoichiometry and superstructures, and biominerals. Nowadays, we are witnessing the push for the improvement of detectors for imaging (direct detection of electrons) and X-rays (silicon drift detectors and annular high solid-angle of collection detectors), the development of new support materials (e.g. graphene) and liquid cells for TEMs. Most of these new technologies have not yet been applied to mineralogical problems but we hope they will be in the near future.




Nanomaterials from Clay Minerals


Book Description

Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials details the structure, properties and modification of natural nanoscale clay minerals and their application as the green constituent of functional materials. Natural nanomaterials from clay minerals have diverse morphologies, from 1D to 3D, including nanorods, nanofibers, nanotubes, nanosheets and nanopores. These structures show excellent adsorption, reinforcing, supporter, electronic, catalytic and biocompatible properties and are great as sustainable alternatives for toxic or expensive artificial materials. This book provides systematic coverage of clay nanomaterials as eco-friendly resources, emphasizing the importance of such materials in a range of industries, including biomedicine, energy and electronics. This book will provide an important reference for materials scientists and engineers who have an interest in sustainable material development. - Presents systematic coverage of a broad range of nanomaterials from clay minerals, including Kaolinite, Smectite and Halloysite - Depicts use cases for each mineral in a variety of applications, such as drug delivery, agriculture, and in the reinforcement of polymer materials - Provides an overview on the advantages and limitations of nanomaterials from clay minerals, as well as chapters on the future potential of such materials




Mineral Surface Reactions at the Nanoscale


Book Description

Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.




Functional Fillers and Nanoscale Minerals


Book Description

Mineral additives are widespread in industrial manufacturing processes. So-called mineral fillers are used to extend raw materials and cut costs. Recently minerals and associated inorganics have frequently been used for their functionality and other mineral-specific qualities. The emergence of nanoscale minerals parallels the global pursuit of nanotechnology. The use of these minerals plays an important role in low-cost, high-performance application of nanotechnology. This 21-chapter compilation is for mineral suppliers, industrial users of mineral fillers, and those concerned with new trends in mineral processing and nanotechnology. Contributions by leading international researchers highlight the emerging markets and applications of functional fillers and nanoscale minerals.




Mechanochemistry in Nanoscience and Minerals Engineering


Book Description

Mechanochemistry as a branch of solid state chemistry enquires into processes which proceed in solids due to the application of mechanical energy. This provides a thorough, up to date overview of mechanochemistry of solids and minerals. Applications of mechanochemistry in nanoscience with special impact on nanogeoscience are described. Selected advanced identification methods, most frequently applied in nanoscience, are described as well as the advantage of mechanochemical approach in minerals engineering. Examples of industrial applications are given. Mechanochemical technology is being applied in many industrial fields: powder metallurgy (synthesis of nanometals, alloys and nanocompounds), building industry (activation of cements), chemical industry (solid waste treatment, catalyst synthesis, coal ashes utilization), minerals engineering (ore enrichment, enhancement of processes of extractive metallurgy), agriculture industry (solubility increase of fertilizers), and pharmaceutical industry (improvement of solubility and bioavailability of drugs). This reference serves as an introduction to newcomers to mechanochemistry, and encourages more experienced researchers to broaden their knowledge and discover novel applications in the field.




Application of Nanotechnology in Mining Processes


Book Description

b”Application of Nanotechnology in Mining ProcessesNanotechnology has revolutionized processes in many industries but its application in the mining industry has not been widely discussed. This unique book provides an overview of the successful implementation of nanotechnology in some of the key environmental and beneficiation mining processes. This book explores extensively the potential of nanotechnology to revolutionize the mining industry which has been relying for a very long on processes with limited efficiencies. The nine specialized chapters focus on applying nanoflotation to improve mineral processing, effective extraction of metals from leachates or pregnant solutions using nanoscale supramolecular hosts, and development of nano-adsorbents or nano-based strategies for the remediation or valorization of AMD. The application of nanotechnology in mining has so far received little attention from the industry and researchers and this groundbreaking book features critical issues so far under-reported in the literature: Application of nanotechnology in mineral processing for the enhancement of froth flotation Development of smart nanomaterials and application for the treatment of acid mine drainage Recovery of values from pregnant solutions using nanoadsorbents Valorization of AMD through formation of multipurpose nanoproducts. Audience Industrial interest will be from mining plant operators, environmental managers, water treatment plants managers, and operators. Researchers in nanotechnology, environmental science, mining, and metallurgy engineering will find the book valuable, as will government entities such as regulatory bodies officers and environmentalists.




Minerals: A Very Short Introduction


Book Description

Minerals existed long before any forms of life, playing a key role in the origin and evolution of life; an interaction with biological systems that we are only now beginning to understand. Exploring the traditional strand of mineralogy, which emphasises the important mineral families, the well-established analytical methods (optical microscopy and X-ray diffraction) and the dramatic developments made in techniques over recent decades, David Vaughan also introduces the modern strand of mineralogy, which explores the role minerals play in the plate tectonic cycle and how they interact with the living world. Demonstrating how minerals can be critical for human health and illness by providing essential nutrients and releasing poisons, Vaughan explores the multitude of ways in which minerals have aided our understanding of the world. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




Introduction to Nanoscience and Nanotechnology


Book Description

The maturation of nanotechnology has revealed it to be a unique and distinct discipline rather than a specialization within a larger field. Its textbook cannot afford to be a chemistry, physics, or engineering text focused on nano. It must be an integrated, multidisciplinary, and specifically nano textbook. The archetype of the modern nano textbook




Introduction to Nanoscience


Book Description

Tomorrow's nanoscientist will have a truly interdisciplinary and nano-centric education, rather than, for example, a degree in chemistry with a specialization in nanoscience. For this to happen, the field needs a truly focused and dedicated textbook. This full-color masterwork is such a textbook. It introduces the nanoscale along with the societal




Environmental Nanotechnology


Book Description

Environmental nanotechnology is considered to play a key role in shaping of current environmental engineering and science practices. This book titled "Environmental Nanotechnology" covers the advanced materials, devices, and system development for use in the environmental protection. The development of nano-based materials, understanding their chemistry and characterization using techniques like X- Ray diffraction, FT-IR, EDX, scanning electron microscope (SEM), transmission electron microscope (TEM), high resolution-TEM, etc is included. It also highlights the scope for their applications in environmental protection, environmental remediation and environmental biosensors for detection, monitoring and assessment. Key Features: Covers basic to advanced Nano-based materials, their synthesis, development, characterization and applications and all the updated information related to environmental nanotechnology. Discusses implications of nanomaterials on the environment and applications of nanotechnology to protect the environment. Illustrates specific topics such as ethics of nanotechnology development, Nano-biotechnology, and application in wastewater technology. Includes applications of nanomaterials for combating global climate change and carbon sequestration. Gives examples of field applications of environmental nanotechnology. This book covers advanced materials, devices, and system developments for use in environmental protection. The development of nano-based materials, understanding its chemistry and characterization by the use of X-Ray diffraction, FT-IR, EDX, scanning electron microscope (SEM), transmission electron microscope (TEM), and high resolution-TEM give the scope for their application in environmental protection, environmental remediation, and environmental biosensors for detection, monitoring, and assessment. The green chemistry based on nano-based materials prevents pollution and controls environmental contaminants.