Evolutionary and Revolutionary Technologies for Mining


Book Description

The Office of Industrial Technologies (OIT) of the U. S. Department of Energy commissioned the National Research Council (NRC) to undertake a study on required technologies for the Mining Industries of the Future Program to complement information provided to the program by the National Mining Association. Subsequently, the National Institute for Occupational Safety and Health also became a sponsor of this study, and the Statement of Task was expanded to include health and safety. The overall objectives of this study are: (a) to review available information on the U.S. mining industry; (b) to identify critical research and development needs related to the exploration, mining, and processing of coal, minerals, and metals; and (c) to examine the federal contribution to research and development in mining processes.




Minerals, Critical Minerals, and the U.S. Economy


Book Description

Minerals are part of virtually every product we use. Common examples include copper used in electrical wiring and titanium used to make airplane frames and paint pigments. The Information Age has ushered in a number of new mineral uses in a number of products including cell phones (e.g., tantalum) and liquid crystal displays (e.g., indium). For some minerals, such as the platinum group metals used to make cataytic converters in cars, there is no substitute. If the supply of any given mineral were to become restricted, consumers and sectors of the U.S. economy could be significantly affected. Risks to minerals supplies can include a sudden increase in demand or the possibility that natural ores can be exhausted or become too difficult to extract. Minerals are more vulnerable to supply restrictions if they come from a limited number of mines, mining companies, or nations. Baseline information on minerals is currently collected at the federal level, but no established methodology has existed to identify potentially critical minerals. This book develops such a methodology and suggests an enhanced federal initiative to collect and analyze the additional data needed to support this type of tool.




The Geopolitics of the Global Energy Transition


Book Description

The world is currently undergoing an historic energy transition, driven by increasingly stringent decarbonisation policies and rapid advances in low-carbon technologies. The large-scale shift to low-carbon energy is disrupting the global energy system, impacting whole economies, and changing the political dynamics within and between countries. This open access book, written by leading energy scholars, examines the economic and geopolitical implications of the global energy transition, from both regional and thematic perspectives. The first part of the book addresses the geopolitical implications in the world’s main energy-producing and energy-consuming regions, while the second presents in-depth case studies on selected issues, ranging from the geopolitics of renewable energy, to the mineral foundations of the global energy transformation, to governance issues in connection with the changing global energy order. Given its scope, the book will appeal to researchers in energy, climate change and international relations, as well as to professionals working in the energy industry.







Mineral Processing


Book Description

Metal usage by humans is vigorously increasing day-by-day. Since the turn of the new millennium, human needs have mainly depended on different types of metal. Ores and minerals are the primary natural sources of metals. In order to process metals, manufacturers require certain methods and technology. This reference book provides six widely used varieties of metal synthesizing and the chapters are contributed by internationally reputed professors and researchers. Chapter One focuses on biomineralization. Biomineralisation is an art of nature; it is an important process where organisms produce hierarchical mineral structures with diverse functions for their survival. This process happens through the self-organisation of organic and inorganic molecules under ambient conditions, resulting in highly structured materials with remarkable physical and chemical properties. Chapter Two refers to the application of biological methods in mineral processing. Chapter Three describes monazite mineral processing; monazite is the main resource of rare earth metals such as uranium and thorium. In this chapter, monazite mining, beneficiation and metallurgical routes are discussed. Chapter Four defines the hydrometallurgy of rare earth metals, including scandium. Chapter Five deals with ore extraction technology through computer aided engineering techniques. The final chapter concludes with the processing technology used to treat primary and secondary sources for base metal recovery.




The Rare Metals War


Book Description

The resources race is on. Powering our digital lives and green technologies are some of the Earth’s most precious metals — but they are running out. And what will happen when they do? The green-tech revolution has been lauded as the silver bullet to a new world. One that is at last free of oil, pollution, shortages, and cross-border tensions. Drawing on six years of research across a dozen countries, this book cuts across conventional green thinking to probe the hidden, dark side of green technology. By breaking free of fossil fuels, we are in fact setting ourselves up for a new dependence — on rare metals such as cobalt, gold, and palladium. They are essential to electric vehicles, wind turbines, solar panels, our smartphones, computers, tablets, and other everyday connected objects. China has captured the lion’s share of the rare metals industry, but consumers know very little about how they are mined and traded, or their environmental, economic, and geopolitical costs. The Rare Metals War is a vital exposé of the ticking time-bomb that lies beneath our new technological order. It uncovers the reality of our lavish and ambitious environmental quest that involves risks as formidable as those it seeks to resolve.




Critical Mineral Resources of the United States


Book Description

As the importance and dependence of specific mineral commodities increase, so does concern about their supply. The United States is currently 100 percent reliant on foreign sources for 20 mineral commodities and imports the majority of its supply of more than 50 mineral commodities. Mineral commodities that have important uses and face potential supply disruption are critical to American economic and national security. However, a mineral commodity's importance and the nature of its supply chain can change with time; a mineral commodity that may not have been considered critical 25 years ago may be critical today, and one considered critical today may not be so in the future. The U.S. Geological Survey has produced this volume to describe a select group of mineral commodities currently critical to our economy and security. For each mineral commodity covered, the authors provide a comprehensive look at (1) the commodity's use; (2) the geology and global distribution of the mineral deposit types that account for the present and possible future supply of the commodity; (3) the current status of production, reserves, and resources in the United States and globally; and (4) environmental considerations related to the commodity's production from different types of mineral deposits. The volume describes U.S. critical mineral resources in a global context, for no country can be self-sufficient for all its mineral commodity needs, and the United States will always rely on global mineral commodity supply chains. This volume provides the scientific understanding of critical mineral resources required for informed decisionmaking by those responsible for ensuring that the United States has a secure and sustainable supply of mineral commodities.




Using the Engineering Literature


Book Description

The field of engineering is becoming increasingly interdisciplinary, and there is an ever-growing need for engineers to investigate engineering and scientific resources outside their own area of expertise. However, studies have shown that quality information-finding skills often tend to be lacking in the engineering profession. Using the Engineerin




Minerals, Metals and Sustainability


Book Description

Minerals, Metals and Sustainability examines the exploitation of minerals and mineral products and the implications for sustainability of the consumption of finite mineral resources and the wastes associated with their production and use. It provides a multi-disciplinary approach that integrates the physical and earth sciences with the social sciences, ecology and economics. Increasingly, graduates in the minerals industry and related sectors will not only require a deep technical and scientific understanding of their fields (such as geology, mining, metallurgy), but will also need a knowledge of how their industry relates to and can contribute to the transition to sustainability. Chapters 1 to 3 introduce the concept of materials, how they are used in society and the environmental basis of our existence. Chapter 4 introduces the concept of sustainability and the issues it raises for the use of non-renewable resources. Chapter 5 discusses the geological basis of the minerals industry and Chapter 6 describes the structure and nature of the industry. Chapters 7 and 8 review the technologies by which mineral resources are extracted from the Earth’s crust and processed. Chapters 9 and 10 examine the usage of energy and water. Chapters 11 and 12 survey the wastes resulting from the production of mineral and metal commodities, the human and environmental impacts of these, and how they are managed. Chapter 13 examines the recycling of mineral-derived materials and the role of secondary materials in meeting material needs. Chapter 14 surveys the potential future sources of minerals and the factors that determine long-term supply. Chapter 15 surveys the socio-economic and technological factors that determine the long-term demand for mineral-derived materials and future trends. Chapter 16 discusses how waste can be reduced, or eliminated, through technological developments and socio-political changes. Finally, Chapter 17 addresses the concept of stewardship and the role the minerals industry should play in the ongoing transition to sustainability. Minerals, Metals and Sustainability is an important reference for students of engineering and applied science and geology; practising engineers, geologists and scientists; students of economics, social sciences and related disciplines; professionals in government service in areas such as resources, environment and sustainability; and non-technical professionals working in the minerals industry or in sectors servicing the minerals industry.




Achieving the Paris Climate Agreement Goals


Book Description

This open access book presents detailed pathways to achieve 100% renewable energy by 2050, globally and across ten geographical regions. Based on state-of-the-art scenario modelling, it provides the vital missing link between renewable energy targets and the measures needed to achieve them. Bringing together the latest research in climate science, renewable energy technology, employment and resource impacts, the book breaks new ground by covering all the elements essential to achieving the ambitious climate mitigation targets set out in the Paris Climate Agreement. For example, sectoral implementation pathways, with special emphasis on differences between developed and developing countries and regional conditions, provide tools to implement the scenarios globally and domestically. Non-energy greenhouse gas mitigation scenarios define a sustainable pathway for land-use change and the agricultural sector. Furthermore, results of the impact of the scenarios on employment and mineral and resource requirements provide vital insight on economic and resource management implications. The book clearly demonstrates that the goals of the Paris Agreement are achievable and feasible with current technology and are beneficial in economic and employment terms. It is essential reading for anyone with responsibility for implementing renewable energy or climate targets internationally or domestically, including climate policy negotiators, policy-makers at all levels of government, businesses with renewable energy commitments, researchers and the renewable energy industry. Part 2 of this title can be found at this Link: https://link.springer.com/book/10.1007/978-3-030-99177-7