Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)


Book Description

This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.




Intermediate Futures And Options: An Active Learning Approach


Book Description

Futures and Options are concerned with the valuation of derivatives and their application to hedging and speculating investments. This book contains 22 chapters and is divided into five parts. Part I contains an overview including a general introduction as well as an introduction to futures, options, swaps, and valuation theories. Part II: Forwards and Futures discusses futures valuation, the futures market, hedging strategies, and various types of futures. Part III: Option Theories and Applications includes both the basic and advanced valuation of options and option strategies in addition to index and currency options. Part IV: Advanced Analyses of Options takes a look at higher level strategies used to quantitatively approach the analysis of options. Part V: Special Topics of Options and Futures covers the applications of more obscure and alternative methods in derivatives as well as the derivation of the Black-Scholes Option Pricing Model.This book applies an active interdisciplinary approach to presenting the material; in other words, three projects involving the use of real-world financial data on derivative, in addition to homework assignments, are made available for students in this book.




Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications


Book Description

Backward stochastic differential equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtration-consistent nonlinear expectations and g-expectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equity-linked claims and asset-liability management problems. It additionally investigates perfect hedging, superhedging, quadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-good-deal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners.




Handbooks in Operations Research and Management Science: Financial Engineering


Book Description

The remarkable growth of financial markets over the past decades has been accompanied by an equally remarkable explosion in financial engineering, the interdisciplinary field focusing on applications of mathematical and statistical modeling and computational technology to problems in the financial services industry. The goals of financial engineering research are to develop empirically realistic stochastic models describing dynamics of financial risk variables, such as asset prices, foreign exchange rates, and interest rates, and to develop analytical, computational and statistical methods and tools to implement the models and employ them to design and evaluate financial products and processes to manage risk and to meet financial goals. This handbook describes the latest developments in this rapidly evolving field in the areas of modeling and pricing financial derivatives, building models of interest rates and credit risk, pricing and hedging in incomplete markets, risk management, and portfolio optimization. Leading researchers in each of these areas provide their perspective on the state of the art in terms of analysis, computation, and practical relevance. The authors describe essential results to date, fundamental methods and tools, as well as new views of the existing literature, opportunities, and challenges for future research.




Mathematical Finance - Bachelier Congress 2000


Book Description

The Bachelier Society for Mathematical Finance held its first World Congress in Paris last year, and coincided with the centenary of Louis Bacheliers thesis defence. In his thesis Bachelier introduces Brownian motion as a tool for the analysis of financial markets as well as the exact definition of options. The thesis is viewed by many the key event that marked the emergence of mathematical finance as a scientific discipline. The prestigious list of plenary speakers in Paris included two Nobel laureates, Paul Samuelson and Robert Merton, and the mathematicians Henry McKean and S.R.S. Varadhan. Over 130 further selected talks were given in three parallel sessions. .




Exotic Option Pricing and Advanced Lévy Models


Book Description

Since around the turn of the millennium there has been a general acceptance that one of the more practical improvements one may make in the light of the shortfalls of the classical Black-Scholes model is to replace the underlying source of randomness, a Brownian motion, by a Lévy process. Working with Lévy processes allows one to capture desirable distributional characteristics in the stock returns. In addition, recent work on Lévy processes has led to the understanding of many probabilistic and analytical properties, which make the processes attractive as mathematical tools. At the same time, exotic derivatives are gaining increasing importance as financial instruments and are traded nowadays in large quantities in OTC markets. The current volume is a compendium of chapters, each of which consists of discursive review and recent research on the topic of exotic option pricing and advanced Lévy markets, written by leading scientists in this field. In recent years, Lévy processes have leapt to the fore as a tractable mechanism for modeling asset returns. Exotic option values are especially sensitive to an accurate portrayal of these dynamics. This comprehensive volume provides a valuable service for financial researchers everywhere by assembling key contributions from the world's leading researchers in the field. Peter Carr, Head of Quantitative Finance, Bloomberg LP. This book provides a front-row seat to the hottest new field in modern finance: options pricing in turbulent markets. The old models have failed, as many a professional investor can sadly attest. So many of the brightest minds in mathematical finance across the globe are now in search of new, more accurate models. Here, in one volume, is a comprehensive selection of this cutting-edge research. Richard L. Hudson, former Managing Editor of The Wall Street Journal Europe, and co-author with Benoit B. Mandelbrot of The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward




The Interval Market Model in Mathematical Finance


Book Description

Toward the late 1990s, several research groups independently began developing new, related theories in mathematical finance. These theories did away with the standard stochastic geometric diffusion “Samuelson” market model (also known as the Black-Scholes model because it is used in that most famous theory), instead opting for models that allowed minimax approaches to complement or replace stochastic methods. Among the most fruitful models were those utilizing game-theoretic tools and the so-called interval market model. Over time, these models have slowly but steadily gained influence in the financial community, providing a useful alternative to classical methods. A self-contained monograph, The Interval Market Model in Mathematical Finance: Game-Theoretic Methods assembles some of the most important results, old and new, in this area of research. Written by seven of the most prominent pioneers of the interval market model and game-theoretic finance, the work provides a detailed account of several closely related modeling techniques for an array of problems in mathematical economics. The book is divided into five parts, which successively address topics including: · probability-free Black-Scholes theory; · fair-price interval of an option; · representation formulas and fast algorithms for option pricing; · rainbow options; · tychastic approach of mathematical finance based upon viability theory. This book provides a welcome addition to the literature, complementing myriad titles on the market that take a classical approach to mathematical finance. It is a worthwhile resource for researchers in applied mathematics and quantitative finance, and has also been written in a manner accessible to financially-inclined readers with a limited technical background.




Introduction to Stochastic Finance


Book Description

This book gives a systematic introduction to the basic theory of financial mathematics, with an emphasis on applications of martingale methods in pricing and hedging of contingent claims, interest rate term structure models, and expected utility maximization problems. The general theory of static risk measures, basic concepts and results on markets of semimartingale model, and a numeraire-free and original probability based framework for financial markets are also included. The basic theory of probability and Ito's theory of stochastic analysis, as preliminary knowledge, are presented.




Probabilistic Models for Nonlinear Partial Differential Equations


Book Description

The lecture courses of the CIME Summer School on Probabilistic Models for Nonlinear PDE's and their Numerical Applications (April 1995) had a three-fold emphasis: first, on the weak convergence of stochastic integrals; second, on the probabilistic interpretation and the particle approximation of equations coming from Physics (conservation laws, Boltzmann-like and Navier-Stokes equations); third, on the modelling of networks by interacting particle systems. This book, collecting the notes of these courses, will be useful to probabilists working on stochastic particle methods and on the approximation of SPDEs, in particular, to PhD students and young researchers.




Dynamic Portfolio Strategies: quantitative methods and empirical rules for incomplete information


Book Description

Dynamic Portfolio Strategies: Quantitative Methods and Empirical Rules for Incomplete Information investigates optimal investment problems for stochastic financial market models. It is addressed to academics and students who are interested in the mathematics of finance, stochastic processes, and optimal control, and also to practitioners in risk management and quantitative analysis who are interested in new strategies and methods of stochastic analysis. While there are many works devoted to the solution of optimal investment problems for various models, the focus of this book is on analytical strategies based on "technical analysis" which are model-free. The technical analysis of these strategies has a number of characteristics. Two of the more important characteristics are: (1) they require only historical data, and (2) typically they are more widely used by traders than analysis based on stochastic models. Hence it is the objective of this book to reduce the gap between model-free strategies and strategies that are "optimal" for stochastic models. We hope that researchers, students and practitioners will be interested in some of the new empirically based methods of "technical analysis" strategies suggested in this book and evaluated via stochastic market models.