Mitochondria and the Future of Medicine


Book Description

With information for patients and practitioners on optimizing mitochondrial function for greater health and longevity Why do we age? Why does cancer develop? What's the connection between heart failure and Alzheimer's disease, or infertility and hearing loss? Can we extend lifespan, and if so, how? What is the Exercise Paradox? Why do antioxidant supplements sometimes do more harm than good? Many will be amazed to learn that all these questions, and many more, can be answered by a single point of discussion: mitochondria and bioenergetics. In Mitochondria and the Future of Medicine, Naturopathic Doctor Lee Know tells the epic story of mitochondria, the widely misunderstood and often-overlooked powerhouses of our cells. The legendary saga began over two billion years ago, when one bacterium entered another without being digested, which would evolve to create the first mitochondrion. Since then, for life to exist beyond single-celled bacteria, it's the mitochondria that have been responsible for this life-giving energy. By understanding how our mitochondria work, in fact, it is possible to add years to our lives, and life to our years. Current research, however, has revealed a dark side: many seemingly disconnected degenerative diseases have tangled roots in dysfunctional mitochondria. However, modern research has also endowed us with the knowledge on how to optimize its function, which is of critical importance to our health and longevity. Lee Know offers cutting-edge information on supplementation and lifestyle changes for mitochondrial optimization, such as CoQ10, D-Ribose, cannabinoids, and ketogenic dietary therapy, and how to implement their use successfully. Mitochondria and the Future of Medicine is an invaluable resource for practitioners interested in mitochondrial medicine and the true roots of chronic illness and disease, as well as anyone interested in optimizing their health.




Power, Sex, Suicide


Book Description

Mitochondria are tiny structures located inside our cells that carry out the essential task of producing energy for the cell. They are found in all complex living things, and in that sense, they are fundamental for driving complex life on the planet. But there is much more to them than that. Mitochondria have their own DNA, with their own small collection of genes, separate from those in the cell nucleus. It is thought that they were once bacteria living independent lives. Their enslavement within the larger cell was a turning point in the evolution of life, enabling the development of complex organisms and, closely related, the origin of two sexes. Unlike the DNA in the nucleus, mitochondrial DNA is passed down exclusively (or almost exclusively) via the female line. That's why it has been used by some researchers to trace human ancestry daughter-to-mother, to 'Mitochondrial Eve'. Mitochondria give us important information about our evolutionary history. And that's not all. Mitochondrial genes mutate much faster than those in the nucleus because of the free radicals produced in their energy-generating role. This high mutation rate lies behind our ageing and certain congenital diseases. The latest research suggests that mitochondria play a key role in degenerative diseases such as cancer, through their involvement in precipitating cell suicide. Mitochondria, then, are pivotal in power, sex, and suicide. In this fascinating and thought-provoking book, Nick Lane brings together the latest research findings in this exciting field to show how our growing understanding of mitochondria is shedding light on how complex life evolved, why sex arose (why don't we just bud?), and why we age and die. This understanding is of fundamental importance, both in understanding how we and all other complex life came to be, but also in order to be able to control our own illnesses, and delay our degeneration and death. 'An extraordinary account of groundbreaking modern science... The book abounds with interesting and important ideas.' Mark Ridley, Department of Zoology, University of Oxford




Mitochondria


Book Description

"This volume inspires. It certainly will be much appreciated by cell biologists all over the world." Quarterly Review of Biology, March 2009 This book is the eagerly awaited second edition of the best-selling Mitochondria, a book widely acknowledged as the first modern, truly comprehensive authored work on the important, scientifically fundamental topic of the cellular organelles known as mitochondria. This new edition brings readers completely up to date on the many significant findings that have occurred in the eight years since the book was first published. As in that seminal first edition, the second edition tackles the biochemistry, genetics, and pathology of mitochondria in different organisms. The new edition provides thorough updates of all literature concerning this vital organelle, its functions, ongoing research surrounding it, and its importance vis-à-vis a broad range of issues in cellular and molecular biology. The book includes detailed descriptions of current and developing technologies around mitochondrial research and discovery, and highlights subjects that are growing, such as the use of proteomics. This book is an invaluable resource for all geneticists, biologists, and educators in life sciences. It is also of interest for advanced students in genetics and molecular biology.




Mitochondria


Book Description

Mitochondria are intracellular organelles that power the cell by metabolizing glucose and other energy sources to generate ATP. They are also critical in programmed cell death, and dysfunction of mitochondrial components is implicated in numerous muscle and neurodegenerative disorders, including Parkinson's disease. This volume contains contributions examining the evolution and normal function of mitochondria in cells, as well as their roles in various pathologies.




Mitochondria in Obesity and Type 2 Diabetes


Book Description

Mitochondria in Obesity and Type 2 Diabetes: Comprehensive Review on Mitochondrial Functioning and Involvement in Metabolic Diseases synthesizes discoveries from laboratories around the world, enhancing our understanding of the involvement of mitochondria in the etiology of diseases, such as obesity and type 2 diabetes. Chapters illustrate and provide an overview of key concepts on topics such as the role of mitochondria in adipose tissue, cancer, cardiovascular comorbidities, skeletal muscle, the liver, kidney, and more. This book is a must-have reference for students and educational teams in biology, physiology and medicine, and researchers.







Mitochondria


Book Description

Mitochondrial Genomics and Proteomics Protocols offers a broad collection of methods for studying the molecular biology, function, and features of mitochondria. In the past decade, mitochondrial research has elucidated the important influence of mitochondrial processes on integral cell processes such as apoptosis and cellular aging. This practical guide presents a wide spectrum of mitochondrial methods, each written by specialists with solid experience and intended for implementation by novice and expert researchers alike. Part I introduces major experimental model systems and discusses their specific advantages and limitations for functional analysis of mitochondria. The concise overview of general properties of mitochondrial systems is supplemented by detailed protocols for cultivation of model organisms. Parts II-VI comprise a robust collection of protocols for studying different molecular aspects of mitochondrial functions including: genetics and microbiology, biochemistry, physiology, dynamics and morphology, and functional genomics. Emphasis is placed on new and emerging topics in mitochondrial study, such as the examination of apoptotic effects, fusion and fission of mitochondria, and proteome and transcriptome analysis.




Cell Biology by the Numbers


Book Description

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid




Mitochondrial Dysfunction


Book Description

Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.




The Human Mitochondrial Genome


Book Description

The Human Mitochondrial Genome: From Basic Biology to Disease offers a comprehensive, up-to-date examination of human mitochondrial genomics, connecting basic research to translational medicine across a range of disease types. Here, international experts discuss the essential biology of human mitochondrial DNA (mtDNA), including its maintenance, repair, segregation, and heredity. Furthermore, mtDNA evolution and exploitation, mutations, methods, and models for functional studies of mtDNA are dealt with. Disease discussion is accompanied by approaches for treatment strategies, with disease areas discussed including cancer, neurodegenerative, age-related, mtDNA depletion, deletion, and point mutation diseases. Nucleosides supplementation, mitoTALENs, and mitoZNF nucleases are among the therapeutic approaches examined in-depth. With increasing funding for mtDNA studies, many clinicians and clinician scientists are turning their attention to mtDNA disease association. This book provides the tools and background knowledge required to perform new, impactful research in this exciting space, from distinguishing a haplogroup-defining variant or disease-related mutation to exploring emerging therapeutic pathways. - Fully examines recent advances and technological innovations in the field, enabling new mtDNA studies, variant and mutation identification, pathogenic assessment, and therapies - Disease discussion accompanied by diagnostic and therapeutic strategies currently implemented clinically - Outlines and discusses essential research protocols and perspectives for young scientists to pick up - Features an international team of authoritative contributors from basic biologists to clinician-scientists