Mixed Finite Element Models for Free Vibrations of Thin-Walled Beams


Book Description

Simple, mixed finite element models are developed for the free vibration analysis of curved thin-walled beams with arbitrary open cross section. The analytical formulation is based on a Vlasov's type thin-walled beam theory with the effects of flexural-torsional coupling, transverse shear deformation and rotary inertia included. The fundamental unknowns consist of seven internal forces and seven generalized displacements of the beam. The element characteristic arrays are obtained by using a perturbed Lagrangian-mixed variational principle. Only C(sup o) continuity is required for the generalized displacements. The internal forces and the Lagrange multiplier are allowed to be discontinuous at interelement boundaries. Numerical results are presented to demonstrate the high accuracy and effectiveness of the elements developed. The standard of comparison is taken to be the solutions obtained by using 2-D plate/shell models for the beams. Noor, Ahmed K. and Peters, Jeanne M. and Min, Byung-Jin Unspecified Center RTOP 505-63-41-02...




Thin-Walled Composite Beams


Book Description

Annotation This is the first monograph devoted to the foundation of the theory of composite anisotropic thin-walled beams and to its applications in various problems involving the aeronautical/aerospace, helicopter, naval and mechanical structures. Throughout the theoretical part, an effort was made to provide the treatment of the subject by using the equations of the 3-D elasticity theory. Non-classical effects such as transverse shear, warping constraint, anisotropy of constituent materials yielding the coupling of twist-bending (lateral), bending (transversal)-extension have been included and their implications have been thoroughly analyzed. Thermal effects have been included and in order to be able to circumvent their deleterious effects, functionally graded materials have been considered in their construction. Implications of the application of the tailoring technique and of the active feedback control on free vibration, dynamic response, instability and aeroelasticity of such structures have been amply investigated. Special care was exercised throughout this work to address and validate the adopted solution methodologies and the obtained results against those available in the literature and obtained via numerical or experimental means.




NASA Technical Paper


Book Description










NASA Technical Paper


Book Description







Stability and Vibrations of Thin-Walled Composite Structures


Book Description

Stability and Vibrations of Thin-Walled Composite Structures presents engineering and academic knowledge on the stability (buckling and post buckling) and vibrations of thin walled composite structures like columns, plates, and stringer stiffened plates and shells, which form the basic structures of the aeronautical and space sectors. Currently, this knowledge is dispersed in several books and manuscripts, covering all aspects of composite materials. The book enables both engineers and academics to locate valuable, up-to-date knowledge on buckling and vibrations, be it analytical or experimental, and use it for calculations or comparisons. The book is also useful as a textbook for advanced-level graduate courses. - Presents a unified, systematic, detailed and comprehensive overview of the topic - Contains contributions from leading experts in the field - Includes a dedicated section on testing and experimental results




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.