Mixture Formation in Internal Combustion Engines


Book Description

A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.




Combustion Engines Development


Book Description

Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.




Mixture Formation in Spark-Ignition Engines


Book Description

Twentyfour years have gone by since the publication of K. Lohner and H. Muller's comprehen sive work "Gemischbildung und Verbrennung im Ottomotor" in 1967 [1.1]' Naturally, the field of mixture formation and combustion in the spark-ignition engine has wit nessed great technological advances and many new findings in the intervening years, so that the time seemed ripe for presenting a summary of recent research and developments. There fore, I gladly took up the suggestion of the editors of this series of books, Professor Dr. H. List and Professor Dr. A. Pischinger, to write a book summarizing the present state of the art. A center of activity of the Institute of Internal-Combustion Engines and Automotive Engineering at the Vienna Technical University, which I am heading, is the field of mixture formation -there fore, many new results that have been achieved in this area in collaboration with the respective industry have been included in this volume. The basic principles of combustion are discussed only to that extent which seemect necessary for an understanding of the effects of mixture formation. The focal point of this volume is the mixture formation in spark-ignition engines, covering both the theory and actual design of the mixture formation units and appropriate intake manifolds. Also, the related measurement technology is explained in this work.




Internal Combustion Engine Fundamentals


Book Description

This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed.




Modeling Engine Spray and Combustion Processes


Book Description

The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.




Simulating Combustion


Book Description

The numerical simulation of combustion processes in internal combustion engines, including also the formation of pollutants, has become increasingly important in the recent years, and today the simulation of those processes has already become an indispensable tool when - veloping new combustion concepts. While pure thermodynamic models are well-established tools that are in use for the simulation of the transient behavior of complex systems for a long time, the phenomenological models have become more important in the recent years and have also been implemented in these simulation programs. In contrast to this, the thr- dimensional simulation of in-cylinder combustion, i. e. the detailed, integrated and continuous simulation of the process chain injection, mixture formation, ignition, heat release due to combustion and formation of pollutants, has been significantly improved, but there is still a number of challenging problems to solve, regarding for example the exact description of s- processes like the structure of turbulence during combustion as well as the appropriate choice of the numerical grid. While chapter 2 includes a short introduction of functionality and operating modes of internal combustion engines, the basics of kinetic reactions are presented in chapter 3. In chapter 4 the physical and chemical processes taking place in the combustion chamber are described. Ch- ter 5 is about phenomenological multi-zone models, and in chapter 6 the formation of poll- ants is described.




Sustainable Automotive Technologies 2012


Book Description

The book on Sustainable Automotive Technologies aims to draw special attention to the research and practice focused on new technologies and approaches capable of meeting the challenges to sustainable mobility. In particular, the book features incremental and radical technical advancements that are able to meet social, economic and environmental targets in both local and global contexts. These include original solutions to the problems of pollution and congestion, vehicle and public safety, sustainable vehicle design and manufacture, new structures and materials, new power-train technologies and vehicle concepts. In addition to vehicle technologies, the book is also concerned with the broader systemic issues such as sustainable supply chain systems, integrated logistics and telematics, and end-of-life vehicle management. It captures selected peer reviewed papers accepted for presentation at the 4th International Conference on Sustainable Automotive Technologies, ICSAT2012, held at the RMIT, Melbourne, Australia.




Particle Image Velocimetry


Book Description

This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What’s more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.




HCCI and CAI Engines for the Automotive Industry


Book Description

Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.




Introduction to Modeling and Control of Internal Combustion Engine Systems


Book Description

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.