Mobile Robotics for Multidisciplinary Study


Book Description

This lecture provides an introduction to the field of mobile robotics and the intersection between multiple robotics-related disciplines including electrical, mechanical, computer, software engineering and computer science. It is intended for an upper-level undergraduate or first-year graduate students interested in mobile robotics and artificial intelligence with some experience in object-oriented programming and controls. Focus areas will include robotics history, hardware, control and software. Specific topics include robot components, effectors and actuators, locomotion, kinematics, sensors, feedback control, control architectures, representation, navigation, localization and mapping. The end of each chapter includes review questions as well as exercises to provide applications for the concepts as well as opportunities for further study. Table of Contents: Introduction / Hardware / Control / Software




Mobile Robotics for Multidisciplinary Study


Book Description

This lecture provides an introduction to the field of mobile robotics and the intersection between multiple robotics-related disciplines including electrical, mechanical, computer, software engineering and computer science. It is intended for an upper-level undergraduate or first-year graduate students interested in mobile robotics and artificial intelligence with some experience in object-oriented programming and controls. Focus areas will include robotics history, hardware, control and software. Specific topics include robot components, effectors and actuators, locomotion, kinematics, sensors, feedback control, control architectures, representation, navigation, localization and mapping. The end of each chapter includes review questions as well as exercises to provide applications for the concepts as well as opportunities for further study. Table of Contents: Introduction / Hardware / Control / Software




Mobile Robotics for Multidisciplinary Study


Book Description

This lecture provides an introduction to the field of mobile robotics and the intersection between multiple robotics-related disciplines including electrical, mechanical, computer, software engineering and computer science. It is intended for an upper-level undergraduate or first-year graduate students interested in mobile robotics and artificial intelligence with some experience in object-oriented programming and controls. Focus areas will include robotics history, hardware, control and software. Specific topics include robot components, effectors and actuators, locomotion, kinematics, sensors, feedback control, control architectures, representation, navigation, localization and mapping. The end of each chapter includes review questions as well as exercises to provide applications for the concepts as well as opportunities for further study. Table of Contents: Introduction / Hardware / Control / Software




Computational Principles of Mobile Robotics


Book Description

Now in its third edition, this textbook is a comprehensive introduction to the multidisciplinary field of mobile robotics, which lies at the intersection of artificial intelligence, computational vision, and traditional robotics. Written for advanced undergraduates and graduate students in computer science and engineering, the book covers algorithms for a range of strategies for locomotion, sensing, and reasoning. The new edition includes recent advances in robotics and intelligent machines, including coverage of human-robot interaction, robot ethics, and the application of advanced AI techniques to end-to-end robot control and specific computational tasks. This book also provides support for a number of algorithms using ROS 2, and includes a review of critical mathematical material and an extensive list of sample problems. Researchers as well as students in the field of mobile robotics will appreciate this comprehensive treatment of state-of-the-art methods and key technologies.







Robotic Systems: Concepts, Methodologies, Tools, and Applications


Book Description

Through expanded intelligence, the use of robotics has fundamentally transformed a variety of fields, including manufacturing, aerospace, medicine, social services, and agriculture. Continued research on robotic design is critical to solving various dynamic obstacles individuals, enterprises, and humanity at large face on a daily basis. Robotic Systems: Concepts, Methodologies, Tools, and Applications is a vital reference source that delves into the current issues, methodologies, and trends relating to advanced robotic technology in the modern world. Highlighting a range of topics such as mechatronics, cybernetics, and human-computer interaction, this multi-volume book is ideally designed for robotics engineers, mechanical engineers, robotics technicians, operators, software engineers, designers, programmers, industry professionals, researchers, students, academicians, and computer practitioners seeking current research on developing innovative ideas for intelligent and autonomous robotics systems.




Introduction to Autonomous Mobile Robots, second edition


Book Description

The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.




Service Robots and Robotics: Design and Application


Book Description

"This book offers the latest research within the field of service robotics, using a mixture of case studies, research, and future direction in this burgeoning field of technology"--







Robotic Vision: Technologies for Machine Learning and Vision Applications


Book Description

Robotic systems consist of object or scene recognition, vision-based motion control, vision-based mapping, and dense range sensing, and are used for identification and navigation. As these computer vision and robotic connections continue to develop, the benefits of vision technology including savings, improved quality, reliability, safety, and productivity are revealed. Robotic Vision: Technologies for Machine Learning and Vision Applications is a comprehensive collection which highlights a solid framework for understanding existing work and planning future research. This book includes current research on the fields of robotics, machine vision, image processing and pattern recognition that is important to applying machine vision methods in the real world.