The Möbius Strip


Book Description

An analysis of the one-sided and one-edged shape made famous by the illustrations of M.C. Escher, written by an award-winning IBM researcher, traces the Mbius strip's history from the mid-1800s to its present role in mathematics, science, engineering, and other disciplines.




Praying in Color for Kids'


Book Description

Imagine a group of kids on the floor of a gym, or filling a classroom, or on a weekend retreat, praying in a whole new way--so silently that you can hear a pin drop! It happens everyday with Praying in Color.




Experiments in Topology


Book Description

Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.




Wonders of Numbers


Book Description

Who were the five strangest mathematicians in history? What are the ten most interesting numbers? Jam-packed with thought-provoking mathematical mysteries, puzzles, and games, Wonders of Numbers will enchant even the most left-brained of readers. Hosted by the quirky Dr. Googol--who resides on a remote island and occasionally collaborates with Clifford Pickover--Wonders of Numbers focuses on creativity and the delight of discovery. Here is a potpourri of common and unusual number theory problems of varying difficulty--each presented in brief chapters that convey to readers the essence of the problem rather than its extraneous history. Peppered throughout with illustrations that clarify the problems, Wonders of Numbers also includes fascinating "math gossip." How would we use numbers to communicate with aliens? Check out Chapter 30. Did you know that there is a Numerical Obsessive-Compulsive Disorder? You'll find it in Chapter 45. From the beautiful formula of India's most famous mathematician to the Leviathan number so big it makes a trillion look small, Dr. Googol's witty and straightforward approach to numbers will entice students, educators, and scientists alike to pick up a pencil and work a problem.




Classical Topology and Combinatorial Group Theory


Book Description

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.




Topology and Geometry


Book Description

This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS




Mathematical Impressions


Book Description

Soviet mathematician Fomenko augments his technical books and papers with visual impressions of mathematical concepts, often reminiscent of Escher, and with allusions to Breughel and Durer. Over 80 reproductions, a few in color, are accompanied by the artist's explanation of the mathematical principles being suggested. Annotation copyrighted by Book News, Inc., Portland, OR




The No-Sided Professor


Book Description

Here is Martin Gardner''s first collection of short stories. Culled from fiction written over the years for such magazines as Esquire and the London Mystery Magazine, The No-Sided Professor is proof that Gardner''s expertise does not stop at his scientific and mathematical works. Only Gardner can infuse short stories with the same masterful charm, wit, and philosophical brio that have brought him legions of fans through his mathematical-puzzle books and investigations into science and pseudoscience. Gardner introduces us to the "No-Sided Professor," Dr. Stanislaw Slapenarski, who by means of a kind of mathematical yoga blips himself and his nemesis into another dimension. In "At the Feet of Karl Klodhopper," Gardner tells an engrossing story of lust and murder in the art world. These and other stories reveal Gardner''s astonishingly wide range of intellectual insight and cultural acumen. The No-Sided Professor is full of tales of fantasy, humor, the bohemian life, topological wizardry, and mystery. All are stamped with the unmistakable seal of a master storyteller.




Essential Topology


Book Description

This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.