Operational Modal Analysis of Civil Engineering Structures


Book Description

This book covers all aspects of operational modal analysis for civil engineering, from theoretical background to applications, including measurement hardware, software development, and data processing. In particular, this book provides an extensive description and discussion of OMA methods, their classification and relationship, and advantages and drawbacks. The authors cover both the well-established theoretical background of OMA methods and the most recent developments in the field, providing detailed examples to help the reader better understand the concepts and potentialities of the technique. Additional material is provided (data, software) to help practitioners and students become familiar with OMA. Covering a range of different aspects of OMA, always with the application in mind, the practical perspective adopted in this book makes it ideal for a wide range of readers from researchers to field engineers; graduate and undergraduate students; and technicians interested in structural dynamics, system identification, and Structural Health Monitoring. This book also: Analyzes OMA methods extensively, providing details on implementation not easily found in the literature Offers tutorial for development of customized measurement and data processing systems for LabView and National Instruments programmable hardware Discusses different solutions for automated OMA Contains many explanatory applications on real structures Provides detail on applications of OMA beyond system identification, such as (vibration based monitoring, tensile load estimation, etc.) Includes both theory and applications




Modal Analysis


Book Description

Modal Analysis provides a detailed overview of the theory of analytical and experimental modal analysis and its applications. Modal Analysis is the processes of determining the inherent dynamic characteristics of any system and using them to formulate a mathematical model of the dynamic behavior of the system. In the past two decades it has become a major technological tool in the quest for determining, improving and optimizing dynamic characteristics of engineering structures. Its main application is in mechanical and aeronautical engineering, but it is also gaining widespread use in civil and structural engineering, biomechanical problems, space structures, acoustic instruments and nuclear engineering. - The only book to focus on the theory of modal analysis before discussing applications - A relatively new technique being utilized more and more in recent years which is now filtering through to undergraduate courses - Leading expert in the field




Model Analysis of Structures


Book Description

The purpose of this book is to introduce the basic principles and techniques of model studies, which will prove very useful for analysis design and review of structural design, especially of those structures which are not amenable to treatment by the usually simpler and faster theoretical methods.




Analysis and Behavior of Structures


Book Description

Offering students a presentation of classical structural analysis, this text emphasizes the limitations required in creating mathematical models for analysis, including these used in computer programs. Students are encouraged to use hand methods of analysis to develop a feel for the behaviour of structures.




Design and Analysis of Tall and Complex Structures


Book Description

The design of tall buildings and complex structures involves challenging activities, including: scheme design, modelling, structural analysis and detailed design. This book provides structural designers with a systematic approach to anticipate and solve issues for tall buildings and complex structures. This book begins with a clear and rigorous exposition of theories behind designing tall buildings. After this is an explanation of basic issues encountered in the design process. This is followed by chapters concerning the design and analysis of tall building with different lateral stability systems, such as MRF, shear wall, core, outrigger, bracing, tube system, diagrid system and mega frame. The final three chapters explain the design principles and analysis methods for complex and special structures. With this book, researchers and designers will find a valuable reference on topics such as tall building systems, structure with complex geometry, Tensegrity structures, membrane structures and offshore structures. - Numerous worked-through examples of existing prestigious projects around the world (such as Jeddah Tower, Shanghai Tower, and Petronas Tower etc.) are provided to assist the reader's understanding of the topic - Provides the latest modelling methods in design such as BIM and Parametric Modelling technique - Detailed explanations of widely used programs in current design practice, such as SAP2000, ETABS, ANSYS, and Rhino - Modelling case studies for all types of tall buildings and complex structures, such as: Buttressed Core system, diagrid system, Tube system, Tensile structures and offshore structures etc.




Dynamic Analysis of Structures


Book Description

Dynamic Analysis of Structures reflects the latest application of structural dynamics theory to produce more optimal and economical structural designs. Written by an author with over 37 years of researching, teaching and writing experience, this reference introduces complex structural dynamics concepts in a user-friendly manner. The author includes carefully worked-out examples which are solved utilizing more recent numerical methods. These examples pave the way to more accurately simulate the behavior of various types of structures. The essential topics covered include principles of structural dynamics applied to particles, rigid and deformable bodies, thus enabling the formulation of equations for the motion of any structure. - Covers the tools and techniques needed to build realistic modeling of actual structures under dynamic loads - Provides the methods to formulate the equations of motion of any structure, no matter how complex it is, once the dynamic model has been adopted - Provides carefully worked-out examples that are solved using recent numerical methods




Modeling for Structural Analysis


Book Description

"Explains purpose and limitations of structural analysis as tool for designing buildings, other structures. Describes linear and nonlinear behavior of structures and structural components, and how to model this for analysis. Uses physical explanations rather than formal theory or mathematics. Reference for students, educators, practicing engineers at all levels"--




Inelastic Analysis of Structures


Book Description

Hat ein Werkstoff seine Elastizitatsgrenze erreicht, so verhalt er sich inelastisch. Ingenieure und Designer mussen wissen, mit welchen Eigenschaften dann zu rechnen ist. Dieser Band vermittelt Ihnen den aktuellen Wissensstand auf dem Gebiet des plastischen Verhaltens und der plastischen Zug-Spannungs-Beziehungen. Behandelt werden in erster Linie Baustoffe, vor allem Stahl, aber auch Beton und Boden. Eine ausgewogene Mischung aus qualitativer Diskussion und mathematischer Theorie! (05/00)




Abnormal Loading on Structures


Book Description

Designing for hazardous and abnormal loads has become an important requirement in the design process of most major buildings and civil engineering structures, ranging from tall buildings to bridges, power plants to harbour and coastal installations. This state-of-the-art volume was compiled by the Institution of Structural Engineers' informal study group Model Analysis as a Design Tool and City University's Structures Research Centre. It contains a series of papers on the design and analysis of structures through full scale and numerical modelling including the crucial areas of hazard identification and risk assessment of structures. This book will be essential reading for civil and structural engineers, designers and researchers.




Computational Analysis and Design of Bridge Structures


Book Description

Gain Confidence in Modeling Techniques Used for Complicated Bridge StructuresBridge structures vary considerably in form, size, complexity, and importance. The methods for their computational analysis and design range from approximate to refined analyses, and rapidly improving computer technology has made the more refined and complex methods of ana