Model-Based Control of Networked Systems


Book Description

This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates. It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control. Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and design of model-based networked systems Parameter identification and adaptive stabilization of systems controlled over networks The MB-NCS approach to decentralized control of distributed systems Model-Based Control of Networked Systems will appeal to researchers, practitioners, and graduate students interested in the control of networked systems, distributed systems, and systems with limited feedback.




Networked Control Systems


Book Description

This book nds its origin in the WIDE PhD School on Networked Control Systems, which we organized in July 2009 in Siena, Italy. Having gathered experts on all the aspects of networked control systems, it was a small step to go from the summer school to the book, certainly given the enthusiasm of the lecturers at the school. We felt that a book collecting overviewson the important developmentsand open pr- lems in the eld of networked control systems could stimulate and support future research in this appealing area. Given the tremendouscurrentinterests in distributed control exploiting wired and wireless communication networks, the time seemed to be right for the book that lies now in front of you. The goal of the book is to set out the core techniques and tools that are ava- able for the modeling, analysis and design of networked control systems. Roughly speaking, the book consists of three parts. The rst part presents architectures for distributed control systems and models of wired and wireless communication n- works. In particular, in the rst chapter important technological and architectural aspects on distributed control systems are discussed. The second chapter provides insight in the behavior of communication channels in terms of delays, packet loss and information constraints leading to suitable modeling paradigms for commu- cation networks.




Networked Control Systems


Book Description

Networked control systems (NCS) confer advantages of cost reduction, system diagnosis and flexibility, minimizing wiring and simplifying the addition and replacement of individual elements; efficient data sharing makes taking globally intelligent control decisions easier with NCS. The applications of NCS range from the large scale of factory automation and plant monitoring to the smaller networks of computers in modern cars, places and autonomous robots. Networked Control Systems presents recent results in stability and robustness analysis and new developments related to networked fuzzy and optimal control. Many chapters contain case-studies, experimental, simulation or other application-related work showing how the theories put forward can be implemented. The state-of-the art research reported in this volume by an international team of contributors makes it an essential reference for researchers and postgraduate students in control, electrical, computer and mechanical engineering and computer science.




Handbook of Networked and Embedded Control Systems


Book Description

The vast majority of control systems built today are embedded; that is, they rely on built-in, special-purpose digital computers to close their feedback loops. Embedded systems are common in aircraft, factories, chemical processing plants, and even in cars–a single high-end automobile may contain over eighty different computers. The design of embedded controllers and of the intricate, automated communication networks that support them raises many new questions—practical, as well as theoretical—about network protocols, compatibility of operating systems, and ways to maximize the effectiveness of the embedded hardware. This handbook, the first of its kind, provides engineers, computer scientists, mathematicians, and students a broad, comprehensive source of information and technology to address many questions and aspects of embedded and networked control. Separated into six main sections—Fundamentals, Hardware, Software, Theory, Networking, and Applications—this work unifies into a single reference many scattered articles, websites, and specification sheets. Also included are case studies, experiments, and examples that give a multifaceted view of the subject, encompassing computation and communication considerations.




Packet-Based Control for Networked Control Systems


Book Description

This book introduces a unique, packet-based co-design control framework for networked control systems. It begins by providing a comprehensive survey of state-of-the-art research on networked control systems, giving readers a general overview of the field. It then verifies the proposed control framework both theoretically and experimentally – the former using multiple control methodologies, and the latter using a unique online test rig for networked control systems. The framework investigates in detail the most common, communication constraints, including network-induced delays, data packet dropout, data packet disorders, and network access constraints, as well as multiple controller design and system analysis tools such as model predictive control, linear matrix inequalities and optimal control. This unique and complete co-design framework greatly benefits researchers, graduate students and engineers in the fields of control theory and engineering.




Passivity-Based Control and Estimation in Networked Robotics


Book Description

Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques, the authors provide experimental case studies on testbeds of robotic systems including networked haptic devices, visual robotic systems, robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control and estimation. Convergence is rigorously proved even when other passive components are interconnected. The passivity approach is also differentiated from other methodologies. The third part presents the unified passivity-based control-design methodology for multi-agent systems. This scheme is shown to be either immediately applicable or easily extendable to the solution of various motion coordination problems including 3-D attitude/pose synchronization, flocking control and cooperative motion estimation. Academic researchers and practitioners working in systems and control and/or robotics will appreciate the potential of the elegant and novel approach to the control of networked robots presented here. The limited background required and the case-study work described also make the text appropriate for and, it is hoped, inspiring to students.




Control Theory of Digitally Networked Dynamic Systems


Book Description

The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamics. The book includes numerous references to the most recent literature. Many methods are illustrated by numerical examples or experimental results.




Optimal Sequence-Based Control of Networked Linear Systems


Book Description

In Networked Control Systems (NCS), components of a control loop are connected by data networks that may introduce time-varying delays and packet losses into the system, which can severly degrade control performance. Hence, this book presents the newly developed S-LQG (Sequence-Based Linear Quadratic Gaussian) controller that combines the sequence-based control method with the well-known LQG approach to stochastic optimal control in order to compensate for the network-induced effects.




Asynchronous Control for Networked Systems


Book Description

This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel results presented in Asynchronous Control for Networked Systems are transmitted in a concise and clear style supported by simulation and experimental examples. Some applications are also provided. Academic researchers and graduate students investigating control theory, control engineering and computer communications systems can use this monograph to learn how asynchronous control helps tackle the problems of networked systems in centralized and distributed schemes. Control practitioners at work in power systems, vehicle coordination and traffic networks will also find this book helpful in improving the performance of their systems.




Networked Control Systems with Intermittent Feedback


Book Description

Networked Control Systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators and controllers is realized by a shared (wired or wireless) communication network. NCSs offer several advantages, such as reduced installation and maintenance costs, as well as greater flexibility, over conventional control systems in which parts of control loops exchange information via dedicated point-to-point connections. The principal goal of this book is to present a coherent and versatile framework applicable to various settings investigated by the authors over the last several years. This framework is applicable to nonlinear time-varying dynamic plants and controllers with delayed dynamics; a large class of static, dynamic, probabilistic and priority-oriented scheduling protocols; delayed, noisy, lossy and intermittent information exchange; decentralized control problems of heterogeneous agents with time-varying directed (not necessarily balanced) communication topologies; state- and output-feedback; off-line and on-line intermittent feedback; optimal intermittent feedback through Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL); and control systems with exogenous disturbances and modeling uncertainties.