Techniques of Model-based Control


Book Description

Annotation In this book, two of the field's leading experts bring together powerful advances in model-based control for chemical process engineering. From start to finish, Coleman Brosilow and Babu Joseph introduce practical approaches designed to solve real-world problems -- not just theory. The book contains extensive examples and exercises, and an accompanying CD-ROM contains hands-on MATLAB files that supplement the examples and help readers solve the exercises -- a feature found in no other book on the topic.




Process Control


Book Description

Master process control hands on, through practical examples and MATLAB(R) simulations This is the first complete introduction to process control that fully integrates software tools--enabling professionals and students to master critical techniques hands on, through computer simulations based on the popular MATLAB environment. Process Control: Modeling, Design, and Simulation teaches the field's most important techniques, behaviors, and control problems through practical examples, supplemented by extensive exercises--with detailed derivations, relevant software files, and additional techniques available on a companion Web site. Coverage includes: Fundamentals of process control and instrumentation, including objectives, variables, and block diagrams Methodologies for developing dynamic models of chemical processes Dynamic behavior of linear systems: state space models, transfer function-based models, and more Feedback control; proportional, integral, and derivative (PID) controllers; and closed-loop stability analysis Frequency response analysis techniques for evaluating the robustness of control systems Improving control loop performance: internal model control (IMC), automatic tuning, gain scheduling, and enhancements to improve disturbance rejection Split-range, selective, and override strategies for switching among inputs or outputs Control loop interactions and multivariable controllers An introduction to model predictive control (MPC) Bequette walks step by step through the development of control instrumentation diagrams for an entire chemical process, reviewing common control strategies for individual unit operations, then discussing strategies for integrated systems. The book also includes 16 learning modules demonstrating how to use MATLAB and SIMULINK to solve several key control problems, ranging from robustness analyses to biochemical reactors, biomedical problems to multivariable control.




Model Based Control


Book Description

Filling a gap in the literature for a practical approach to the topic, this book is unique in including a whole section of case studies presenting a wide range of applications from polymerization reactors and bioreactors, to distillation column and complex fluid catalytic cracking units. A section of general tuning guidelines of MPC is also present.These thus aid readers in facilitating the implementation of MPC in process engineering and automation. At the same time many theoretical, computational and implementation aspects of model-based control are explained, with a look at both linear and nonlinear model predictive control. Each chapter presents details related to the modeling of the process as well as the implementation of different model-based control approaches, and there is also a discussion of both the dynamic behaviour and the economics of industrial processes and plants. The book is unique in the broad coverage of different model based control strategies and in the variety of applications presented. A special merit of the book is in the included library of dynamic models of several industrially relevant processes, which can be used by both the industrial and academic community to study and implement advanced control strategies.




Model-Based Control:


Book Description

Model-Based Control will be a collection of state-of-the-art contributions in the field of modelling, identification, robust control and optimization of dynamical systems, with particular attention to the application domains of motion control systems (high-accuracy positioning systems) and large scale industrial process control systems.The book will be directed to academic and industrial people involved in research in systems and control, industrial process control and mechatronics.




Model Predictive Control in the Process Industry


Book Description

Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.




Model-based Process Supervision


Book Description

This book provides control engineers and workers in industrial and academic research establishments interested in process engineering with a means to build up a practical and functional supervisory control environment and to use sophisticated models to get the best use out of their process data. Several applications to academic and small-scale-industrial processes are discussed and the development of a supervision platform for an industrial plant is presented.




Modelling and Control of Dynamic Systems Using Gaussian Process Models


Book Description

This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.




Process Dynamics and Control


Book Description

Offering a different approach to other textbooks in the area, this book is a comprehensive introduction to the subject divided in three broad parts. The first part deals with building physical models, the second part with developing empirical models and the final part discusses developing process control solutions. Theory is discussed where needed to ensure students have a full understanding of key techniques that are used to solve a modeling problem. Hallmark Features: Includes worked out examples of processes where the theory learned early on in the text can be applied. Uses MATLAB simulation examples of all processes and modeling techniques- further information on MATLAB can be obtained from www.mathworks.com Includes supplementary website to include further references, worked examples and figures from the book This book is structured and aimed at upper level undergraduate students within chemical engineering and other engineering disciplines looking for a comprehensive introduction to the subject. It is also of use to practitioners of process control where the integrated approach of physical and empirical modeling is particularly valuable.




Multivariable System Identification For Process Control


Book Description

Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.




Predictive Functional Control


Book Description

first industrial application of MPC was in 1973. A key motivation was to provide better performance than could be obtained with the widely-used PID controller whilst making it easy to replace the PID controller unit or module with his new algorithm. It was the advent of digital control technology and the use of software control algorithms that made this replacement easier and more acceptable to process engineers. A decade of industrial practice with PFC was reported in the archival literature by Jacques Richalet et al. in 1978 in an important seminal Automatica paper. Around this time, Cutler and Ramaker published the dynamic matrix control algorithm that also used knowledge of future reference signals to determine a sequence of control signal adjustment. Thus, the theoretical and practical development of predictive control methods was underway and subsequent developments included those of generalized predictive control, and the whole armoury of MPC methods. Jacques Richalet’s approach to PFC was to seek an algorithm that was: • easy to understand; • easy to install; • easy to tune and optimise. He sought a new modular control algorithm that could be readily used by the control-technician engineer or the control-instrument engineer. It goes without saying that this objective also forms a good market strategy.