Issues in the Integration of Research and Operational Satellite Systems for Climate Research


Book Description

This is the second of two Space Studies Board reports that address the complex issue of incorporating the needs of climate research into the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS, which has been driven by the imperative of reliably providing short-term weather information, is itself a union of heretofore separate civilian and military programs. It is a marriage of convenience to eliminate needless duplication and reduce cost, one that appears to be working. The same considerations of expediency and economy motivate the present attempts to add to NPOESS the goals of climate research. The technical complexities of combining seemingly disparate requirements are accompanied by the programmatic complexities of forging further connections among three different agencies, with different mandates, cultures, and congressional appropriators. Yet the stakes are very high, and each agency gains significantly by finding ways to cooperate, as do the taxpayers. Beyond cost savings, benefits include the possibility that long-term climate observations will reveal new phenomena of interest to weather forecasters, as happened with the El Niño/Southern Oscillation. Conversely, climate researchers can often make good use of operational data. Necessity is the mother of invention, and the needs of all the parties involved in NPOESS should conspire to foster creative solutions to make this effort work. Although it has often been said that research and operational requirements are incommensurate, this report and the phase one report (Science and Design) accentuate the degree to which they are complementary and could be made compatible. The reports provide guidelines for achieving the desired integration to the mutual benefit of all parties. Although a significant level of commitment will be needed to surmount the very real technical and programmatic impediments, the public interest would be well served by a positive outcome.




Traffic Simulation and Data


Book Description

A single source of information for researchers and professionals, Traffic Simulation and Data: Validation Methods and Applications offers a complete overview of traffic data collection, state estimation, calibration and validation for traffic modelling and simulation. It derives from the Multitude Project-a European Cost Action project that incorpo




Distributed Hydrological Modelling


Book Description

It is the task of the engineer, as of any other professional person, to do everything that is reasonably possible to analyse the difficulties with which his or her client is confronted, and on this basis to design solutions and implement these in practice. The distributed hydrological model is, correspondingly, the means for doing everything that is reasonably possible - of mobilising as much data and testing it with as much knowledge as is economically feasible - for the purpose of analysing problems and of designing and implementing remedial measures in the case of difficulties arising within the hydrological cycle. Thus the aim of distributed hydrologic modelling is to make the fullest use of cartographic data, of geological data, of satellite data, of stream discharge measurements, of borehole data, of observations of crops and other vegetation, of historical records of floods and droughts, and indeed of everything else that has ever been recorded or remembered, and then to apply to this everything that is known about meteorology, plant physiology, soil physics, hydrogeology, sediment transport and everything else that is relevant within this context. Of course, no matter how much data we have and no matter how much we know, it will never be enough to treat some problems and some situations, but still we can aim in this way to do the best that we possibly can.




Pedestrian and Evacuation Dynamics 2005


Book Description

Due to an increasing number of reported catastrophes all over the world, the safety especially of pedestrians today, is a dramatically growing field of interest, both for practitioners as well as scientists from various disciplines. The questions arising mainly address the dynamics of evacuating people and possible optimisations of the process by changing the architecture and /or the procedure.




Effective Groundwater Model Calibration


Book Description

Methods and guidelines for developing and using mathematical models Turn to Effective Groundwater Model Calibration for a set of methods and guidelines that can help produce more accurate and transparent mathematical models. The models can represent groundwater flow and transport and other natural and engineered systems. Use this book and its extensive exercises to learn methods to fully exploit the data on hand, maximize the model's potential, and troubleshoot any problems that arise. Use the methods to perform: Sensitivity analysis to evaluate the information content of data Data assessment to identify (a) existing measurements that dominate model development and predictions and (b) potential measurements likely to improve the reliability of predictions Calibration to develop models that are consistent with the data in an optimal manner Uncertainty evaluation to quantify and communicate errors in simulated results that are often used to make important societal decisions Most of the methods are based on linear and nonlinear regression theory. Fourteen guidelines show the reader how to use the methods advantageously in practical situations. Exercises focus on a groundwater flow system and management problem, enabling readers to apply all the methods presented in the text. The exercises can be completed using the material provided in the book, or as hands-on computer exercises using instructions and files available on the text's accompanying Web site. Throughout the book, the authors stress the need for valid statistical concepts and easily understood presentation methods required to achieve well-tested, transparent models. Most of the examples and all of the exercises focus on simulating groundwater systems; other examples come from surface-water hydrology and geophysics. The methods and guidelines in the text are broadly applicable and can be used by students, researchers, and engineers to simulate many kinds systems.




Chemometrics in Spectroscopy


Book Description

Chemometrics in Spectroscopy, Second Edition, provides the reader with the methodology crucial to apply chemometrics to real world data. It allows scientists using spectroscopic instruments to find explanations and solutions to their problems when they are confronted with unexpected and unexplained results. Unlike other books on these topics, it explains the root causes of the phenomena that lead to these results. While books on NIR spectroscopy sometimes cover basic chemometrics, they do not mention many of the advanced topics this book discusses. In addition, traditional chemometrics books do not cover spectroscopy to the point of understanding the basis for the underlying phenomena. The second edition has been expanded with 50% more content covering advances in the field that have occurred in the last 10 years, including calibration transfer, units of measure in spectroscopy, principal components, clinical data reporting, classical least squares, regression models, spectral transfer, and more. - Written in the column format of the authors' online magazine - Presents topical and important chapters for those involved in analysis work, both research and routine - Focuses on practical issues in the implementation of chemometrics for NIR Spectroscopy - Includes a companion website with 350 additional color figures that illustrate CLS concepts




Calibration and Validation of Analytical Methods


Book Description

This book seeks to introduce the reader to current methodologies in analytical calibration and validation. This collection of contributed research articles and reviews addresses current developments in the calibration of analytical methods and techniques and their subsequent validation. Section 1, "Introduction," contains the Introductory Chapter, a broad overview of analytical calibration and validation, and a brief synopsis of the following chapters. Section 2 "Calibration Approaches" presents five chapters covering calibration schemes for some modern analytical methods and techniques. The last chapter in this section provides a segue into Section 3, "Validation Approaches," which contains two chapters on validation procedures and parameters. This book is a valuable source of scientific information for anyone interested in analytical calibration and validation.




Computer Simulation Validation


Book Description

This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations. Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.




Root Zone Water Quality Model


Book Description

This publication comes with computer software and presents a comprehensive simulation model designed to predict the hydrologic response, including potential for surface and groundwater contamination, of alternative crop-management systems. It simulates crop development and the movement of water, nutrients and pesticides over and through the root zone for a representative unit area of an agricultural field over multiple years. The model allows simulation of a wide spectrum of management practices and scenarios with special features such as the rapid transport of surface-applied chemicals through macropores to deeper depths and the preferential transport of chemicals within the soil matrix via mobile-immobile zones. The transfer of surface-applied chemicals (pesticides in particular) to runoff water is also an important component.