Model Theory and Modules


Book Description

In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.




Model Theory of Modules, Algebras and Categories


Book Description

This volume contains the proceedings of the international conference Model Theory of Modules, Algebras and Categories, held from July 28–August 2, 2017, at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy. Papers contained in this volume cover recent developments in model theory, module theory and category theory, and their intersection.




Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules


Book Description

This volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability. Pure mathematicians, especially algebraists, ring theorists, logicians, model theorists and representation theorists, should find this an absorbing and stimulating book.




Model Theory


Book Description

Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.




Introduction to Model Theory


Book Description

Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.




Model Theory and Applications


Book Description

This volume is a collection of papers on model theory and its applications. The longest paper, "Model Theory of Unitriangular Groups" by O. V. Belegradek, forms a subtle general theory behind Mal'tsev's famous correspondence between rings and groups. This is the first published paper on the topic. Given the present model-theoretic interest in algebraic groups, Belegradek's work is of particular interest to logicians and algebraists. The rest of the collection consists of papers on various questions of model theory, mainly on stability theory. Contributors are leading Russian researchers in the field.







Model Categories


Book Description

Model categories are used as a tool for inverting certain maps in a category in a controllable manner. They are useful in diverse areas of mathematics. This book offers a comprehensive study of the relationship between a model category and its homotopy category. It develops the theory of model categories, giving a development of the main examples.




Purity, Spectra and Localisation


Book Description

A unified, coherent account of the algebraic aspects and uses of the Ziegler spectrum. It may be used as an introductory graduate-level text, providing relevant background material and a wealth of illustrated examples. An extensive index and thorough referencing also make this book an ideal reference.




Fundamentals of Stability Theory


Book Description

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the twelfth publication in the Perspectives in Logic series, John T. Baldwin presents an introduction to first order stability theory, organized around the spectrum problem: calculate the number of models a first order theory T has in each uncountable cardinal. The author first lays the groundwork and then moves on to three sections: independence, dependence and prime models, and local dimension theory. The final section returns to the spectrum problem, presenting complete proofs of the Vaught conjecture for ω-stable theories for the first time in book form. The book provides much-needed examples, and emphasizes the connections between abstract stability theory and module theory.