Design and Analysis of Biomolecular Circuits


Book Description

The book deals with engineering aspects of the two emerging and intertwined fields of synthetic and systems biology. Both fields hold promise to revolutionize the way molecular biology research is done, the way today’s drug discovery works and the way bio-engineering is done. Both fields stress the importance of building and characterizing small bio-molecular networks in order to synthesize incrementally and understand large complex networks inside living cells. Reminiscent of computer-aided design (CAD) of electronic circuits, abstraction is believed to be the key concept to achieve this goal. It allows hiding the overwhelming complexity of cellular processes by encapsulating network parts into abstract modules. This book provides a unique perspective on how concepts and methods from CAD of electronic circuits can be leveraged to overcome complexity barrier perceived in synthetic and systems biology.




Biomolecular Feedback Systems


Book Description

This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu







Meeting of Board of Regents


Book Description




Protein Simulations


Book Description

Protein Simulation focuses on predicting how protein will act in vivo. These studies use computer analysis, computer modeling, and statistical probability to predict protein function.* Force Fields* Ligand Binding* Protein Membrane Simulation* Enzyme Dynamics* Protein Folding and unfolding simulations




Molecular Modeling and Simulation


Book Description

Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text




Hybrid Systems Biology


Book Description

This book constitutes the thoroughly refereed post-workshop proceedings of the Second International Workshop on Hybrid Systems Biology, HSB 2013, held as part of the ECAL 2013 event, in Taormina, Italy, in September 2013; and the Third International Workshop on Hybrid Systems Biology, HSB 2014, held as part of CAV 2014, in Vienna, Austria, in July 2014. This volume presents 8 full papers together with 2 invited tutorials/surveys from 21 submissions. The HSB 2013 workshop aims at collecting scientists working in the area of hybrid modeling applied to systems biology, in order to discuss about current achieved goals, current challenges and future possible developments. The scope of the HSB 2014 workshop is the general area of dynamical models in biology with an emphasis on hybrid approaches, which are not restricted to a narrow class of mathematical models, and which take advantage of techniques developed separately in different sub-fields. “br> /div




Computational Methods in Systems Biology


Book Description

Rovereto,December2002 CorradoPriami ProgrammeCommitteeofCMSB 2003 CorradoPriami(Chair),UniversityofTrento(Italy), CharlesAu?ray,CNRS,Villejuif(France), CosimaBaldari,Universit`adiSiena(Italy), AlexanderBockmayr,Universit ́eHenriPoincar ́e(France), LucaCardelli,MicrosoftResearchCambridge(UK), VincentDanos,Universit ́eParisVII(France), PierpaoloDegano,Universitad ` iPisa(Italy), Francois ̧ Fages,INRIA,Rocquencourt(France), DrabløsFinn,NorwegianUniversityofScienceandTechnology,Trondheim(N- way), MonikaHeiner,BrandenburgUniversityofTechnologyatCottbus(Germany), InaKoch,UniversityofAppliedSciencesBerlin,(Germany), JohnE.




Hybrid Systems: Computation and Control


Book Description

This volume contains the proceedings of the 7th Workshop on Hybrid Systems: Computation and Control (HSCC 2004) held in Philadelphia, USA, from March 25 to 27, 2004. The annual workshop on hybrid systems attracts researchers from academia and industry interested in modeling, analysis, and implemen- tion of dynamic and reactive systems involving both discrete and continuous behaviors. The previous workshops in the HSCC series were held in Berkeley, USA(1998),Nijmegen,TheNetherlands(1999),Pittsburgh,USA(2000),Rome, Italy (2001), Palo Alto, USA (2002), and Prague, Czech Republic (2003). This year’s HSCC was organized in cooperation with ACM SIGBED (Special Interest Group on Embedded Systems) and was technically co-sponsored by the IEEE Control Systems Society. The program consisted of 4 invited talks and 43 regular papers selected from 117 regular submissions. The program covered topics such as tools for analysis and veri?cation, control and optimization, modeling, and engineering applica- ons, as in past years, and emerging directions in programming language support and implementation. The program also contained one special session focusing on the interplay between biomolecular networks, systems biology, formal methods, andthecontrolofhybridsystems.