Integration of Renewables in Power Systems by Multi-Energy System Interaction


Book Description

This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated.




Risk Modeling, Analysis and Control of Multi-energy Systems


Book Description

This book focuses on the risk modeling, analysis and control of multi-energy systems considering cross-sectorial failure propagation. Both models and methods have been addressed with engineering practice. This is accomplished by doing a thorough investigation into the modeling of system physics and reliabilities in both long- and short-term phases. Different models and methods to evaluate the risk of multi-energy systems considering various disturbances, e.g., component failures, load uncertainties and extreme weather, are studied in detail. Furthermore, several risk control strategies for multi-energy systems, such as long-term capacity planning and integrated demand response, are analyzed in this book, which is especially suited for readers interested in system risk management. The book can benefit researchers, engineers, and graduate students in the fields of electrical and electronic engineering, energy engineering, complex network and control engineering, etc.




Energy Systems Modeling


Book Description

This book serves as an introductory reference guide for those studying the application of models in energy systems. The book opens with a taxonomy of energy models and treatment of descriptive and analytical models, providing the reader with a foundation of the basic principles underlying the energy models and positioning these principles in the context of energy system studies. In turn, the book provides valuable insights into the varied applications of different energy models to answer complex questions, including those concerning specific aspects of energy policy measures dealing with issues of supply and demand. Case studies are provided in all of the chapters, offering real-world examples of how existing models fit the classification methods outlined here. The book’s remaining chapters address a broad range of principles and applications, taking the reader from the basic principles involved, to state-of-the-art energy production and consumption processes, using modeling and validation/illustration in case studies to do so. With its in-depth mathematical foundation, this book serves as a comprehensive collection of work on modeling energy systems and processes, taking inexperienced graduate students from the basics through to a high-level understanding of the modeling processes in question, while also providing professionals and academic researchers in the field of energy planning with an up-to-date reference guide covering the latest works.




Analytics and Optimization for Renewable Energy Integration


Book Description

The scope of this book covers the modeling and forecast of renewable energy and operation and planning of power system with renewable energy integration.The first part presents mathematical theories of stochastic mathematics; the second presents modeling and analytic techniques for renewable energy generation; the third provides solutions on how to handle the uncertainty of renewable energy in power system operation. It includes advanced stochastic unit commitment models to acquire the optimal generation schedule under uncertainty, efficient algorithms to calculate the probabilistic power, and an efficient operation strategy for renewable power plants participating in electricity markets.




Power System Optimization Modeling in GAMS


Book Description

This unique book describes how the General Algebraic Modeling System (GAMS) can be used to solve various power system operation and planning optimization problems. This book is the first of its kind to provide readers with a comprehensive reference that includes the solution codes for basic/advanced power system optimization problems in GAMS, a computationally efficient tool for analyzing optimization problems in power and energy systems. The book covers theoretical background as well as the application examples and test case studies. It is a suitable reference for dedicated and general audiences including power system professionals as well as researchers and developers from the energy sector and electrical power engineering community and will be helpful to undergraduate and graduate students.




Numerical Methods for Energy Applications


Book Description

This book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including: • a wide variety of numerical methods concepts and related energy systems applications;• systems equations and optimization, partial differential equations, and finite difference method;• methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources;• numerical investigations of electrochemical fields and devices; and• issues related to numerical approaches and optimal integration of energy consumption. This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems.




Integration of Renewable Energy Sources Into the Power Grid Through PowerFactory


Book Description

This book evaluates a number of serious technical challenges related to the integration of renewable energy sources into the power grid using the DIgSILENT PowerFactory power system simulation software package. It provides a fresh perspective on analyzing power systems according to renewable energy sources and how they affect power system performance in various situations. The book examines load flow, short-circuit, RMS simulation, power quality, and system reliability in the presence of renewable energy sources, and presents readers with the tools needed for modeling, simulation, and analysis for network planning. The book is a valuable resource for researchers, engineers, and students working to solve power system problems in the presence of renewable energy sources in power system operations and utilities.




Sustainable Fossil Fuels


Book Description

More and more people believe we must quickly wean ourselves from fossil fuels - oil, natural gas and coal - to save the planet from environmental catastrophe, wars and economic collapse. In this 2006 book, Professor Jaccard argues that this view is misguided. We have the technological capability to use fossil fuels without emitting climate-threatening greenhouse gases or other pollutants. The transition from conventional oil and gas to their unconventional sources including coal for producing electricity, hydrogen and cleaner-burning fuels will decrease energy dependence on politically unstable regions. In addition, our vast fossil fuel resources will be the cheapest source of clean energy for the next century and perhaps longer, which is critical for the economic and social development of the world's poorer countries. By buying time for increasing energy efficiency, developing renewable energy technologies and making nuclear power more attractive, fossil fuels will play a key role in humanity's quest for a sustainable energy system.




Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory


Book Description

This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.




Integrated Spatial and Energy Planning


Book Description

This book focuses on spatial planning – an important determinant of energy saving and renewable energy supply. Revealing the key driving forces for spatial development supporting the shift towards energy efficiency and renewable energy supplies, it shows the importance of integrated spatial and energy planning approaches for a timely and sustainable change of energy systems, thus supporting policies of climate protection. As operating within the context of renewable energy sources is becoming a major policy issue at the international, European and national level, spatial dimensions of renewable energy systems as well as challenges, barriers and opportunities in different spatial contexts become more important. This book analyses not only the fundamental system interrelations between resources, technologies and consumption patterns with respect to energy, but also the links to the spatial context, and provides guidelines for researchers as well as practitioners in this new, emerging field. It presents innovative analytical tools to solve real-world problems and discusses the most important fields of action in integrated spatial and energy planning including planning contents, planning visions and principles as well as planning process design and planning methodology.