Modeling and Data Treatment in the Pharmaceutical Sciences


Book Description

From the Introduction The intent of this text is to develop with the student or reader, an ability to look at data and draw all the possible inferences from them; evaluate such inferences statistically; and then, most importantly, to form a picture, mathematically or not, of the actual process that is responsible for the responses. Hence, it has an aim to create an awareness of the use of statistics in pharmaceutical experimentation. This awareness transcends the rote use of canned programs in computers. Aside from addressing the use of statistics and computers for data analysis, many examples in the book point to the dangers of such use without thoughtful understanding of the principles involved. However, the ultimate aim of the book is the ability to use data to model a situation, a phenomenon, or a process and to logically decide on further experimentation. The author has experienced countless situations where someone ( a client, a student) would say that experiments were performed but that they were inconclusive, where, in reality, they were quite conclusive. This book concentrates on how to derive a model from existing data, how to plan further to shore up the model and what statistical, mathematical and programming data is associated with it. The emphasis is on modeling, the application of correct statistics and on common errors in published material. The procedures for modeling are outlined.




Statistical Methodology in the Pharmaceutical Sciences


Book Description

A state-of-the-art handbook of statistical analysis for use in the pharmaceutical industry. Areas covered in this reference/text include: bioavailability, repeated-measures designs, dose-response, population models, multicenter trials, handling dropouts, survival analysis, robust data analysis, cate




Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications, Third Edition


Book Description

This is a revised and very expanded version of the previous second edition of the book. "Pharmacokinetic and Pharmacodynamic Data Analysis" provides an introduction into pharmacokinetic and pharmacodynamic concepts using simple illustrations and reasoning. It describes ways in which pharmacodynamic and pharmacodynamic theory may be used to give insight into modeling questions and how these questions can in turn lead to new knowledge. This book differentiates itself from other texts in this area in that it bridges the gap between relevant theory and the actual application of the theory to real life situations. The book is divided into two parts; the first introduces fundamental principles of PK and PD concepts, and principles of mathematical modeling, while the second provides case studies obtained from drug industry and academia. Topics included in the first part include a discussion of the statistical principles of model fitting, including how to assess the adequacy of the fit of a model, as well as strategies for selection of time points to be included in the design of a study. The first part also introduces basic pharmacokinetic and pharmacodynamic concepts, including an excellent discussion of effect compartment (link) models as well as indirect response models. The second part of the text includes over 70 modeling case studies. These include a discussion of the selection of the model, derivation of initial parameter estimates and interpretation of the corresponding output. Finally, the authors discuss a number of pharmacodynamic modeling situations including receptor binding models, synergy, and tolerance models (feedback and precursor models). This book will be of interest to researchers, to graduate students and advanced undergraduate students in the PK/PD area who wish to learn how to analyze biological data and build models and to become familiar with new areas of application. In addition, the text will be of interest to toxicologists interested in learning about determinants of exposure and performing toxicokinetic modeling. The inclusion of the numerous exercises and models makes it an excellent primary or adjutant text for traditional PK courses taught in pharmacy and medical schools. A diskette is included with the text that includes all of the exercises and solutions using WinNonlin.




Predictive Modeling of Pharmaceutical Unit Operations


Book Description

The use of modeling and simulation tools is rapidly gaining prominence in the pharmaceutical industry covering a wide range of applications. This book focuses on modeling and simulation tools as they pertain to drug product manufacturing processes, although similar principles and tools may apply to many other areas. Modeling tools can improve fundamental process understanding and provide valuable insights into the manufacturing processes, which can result in significant process improvements and cost savings. With FDA mandating the use of Quality by Design (QbD) principles during manufacturing, reliable modeling techniques can help to alleviate the costs associated with such efforts, and be used to create in silico formulation and process design space. This book is geared toward detailing modeling techniques that are utilized for the various unit operations during drug product manufacturing. By way of examples that include case studies, various modeling principles are explained for the nonexpert end users. A discussion on the role of modeling in quality risk management for manufacturing and application of modeling for continuous manufacturing and biologics is also included. - Explains the commonly used modeling and simulation tools - Details the modeling of various unit operations commonly utilized in solid dosage drug product manufacturing - Practical examples of the application of modeling tools through case studies - Discussion of modeling techniques used for a risk-based approach to regulatory filings - Explores the usage of modeling in upcoming areas such as continuous manufacturing and biologics manufacturingBullet points




Characterization of Pharmaceutical Nano- and Microsystems


Book Description

Learn about the analytical tools used to characterize particulate drug delivery systems with this comprehensive overview Edited by a leading expert in the field, Characterization of Pharmaceutical Nano- and Microsystems provides a complete description of the analytical techniques used to characterize particulate drug systems on the micro- and nanoscale. The book offers readers a full understanding of the basic physicochemical characteristics, material properties and differences between micro- and nanosystems. It explains how and why greater experience and more reliable measurement techniques are required as particle size shrinks, and the measured phenomena grow weaker. Characterization of Pharmaceutical Nano- and Microsystems deals with a wide variety of topics relevant to chemical and solid-state analysis of drug delivery systems, including drug release, permeation, cell interaction, and safety. It is a complete resource for those interested in the development and manufacture of new medicines, the drug development process, and the translation of those drugs into life-enriching and lifesaving medicines. Characterization of Pharmaceutical Nano- and Microsystems covers all of the following topics: An introduction to the analytical tools applied to determine particle size, morphology, and shape Common chemical approaches to drug system characterization A description of solid-state characterization of drug systems Drug release and permeation studies Toxicity and safety issues The interaction of drug particles with cells Perfect for pharmaceutical chemists and engineers, as well as all other industry professionals and researchers who deal with drug delivery systems on a regular basis, Characterization of Pharmaceutical Nano- and Microsystems also belongs on bookshelves of interested students and faculty who interact with this topic.




Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment


Book Description

Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment describes the historical evolution of quantitative structure-activity relationship (QSAR) approaches and their fundamental principles. This book includes clear, introductory coverage of the statistical methods applied in QSAR and new QSAR techniques, such as HQSAR and G-QSAR. Containing real-world examples that illustrate important methodologies, this book identifies QSAR as a valuable tool for many different applications, including drug discovery, predictive toxicology and risk assessment. Written in a straightforward and engaging manner, this is the ideal resource for all those looking for general and practical knowledge of QSAR methods. - Includes numerous practical examples related to QSAR methods and applications - Follows the Organization for Economic Co-operation and Development principles for QSAR model development - Discusses related techniques such as structure-based design and the combination of structure- and ligand-based design tools




Lattice


Book Description

Written by the author of the lattice system, this book describes lattice in considerable depth, beginning with the essentials and systematically delving into specific low levels details as necessary. No prior experience with lattice is required to read the book, although basic familiarity with R is assumed. The book contains close to 150 figures produced with lattice. Many of the examples emphasize principles of good graphical design; almost all use real data sets that are publicly available in various R packages. All code and figures in the book are also available online, along with supplementary material covering more advanced topics.




Pharmacometrics


Book Description

Pharmacometrics is the science of interpreting and describing pharmacology in a quantitative fashion. The pharmaceutical industry is integrating pharmacometrics into its drug development program, but there is a lack of and need for experienced pharmacometricians since fewer and fewer academic programs exist to train them. Pharmacometrics: The Science of Quantitative Pharmacology lays out the science of pharmacometrics and its application to drug development, evaluation, and patient pharmacotherapy, providing a comprehensive set of tools for the training and development of pharmacometricians. Edited and written by key leaders in the field, this flagship text on pharmacometrics: Integrates theory and practice to let the reader apply principles and concepts. Provides a comprehensive set of tools for training and developing expertise in the pharmacometric field. Is unique in including computer code information with the examples. This volume is an invaluable resource for all pharmacometricians, statisticians, teachers, graduate and undergraduate students in academia, industry, and regulatory agencies.




The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry


Book Description

The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide




Analytical Techniques in the Pharmaceutical Sciences


Book Description

The aim of this book is to present a range of analytical methods that can be used in formulation design and development and focus on how these systems can be applied to understand formulation components and the dosage form these build. To effectively design and exploit drug delivery systems, the underlying characteristic of a dosage form must be understood--from the characteristics of the individual formulation components, to how they act and interact within the formulation, and finally, to how this formulation responds in different biological environments. To achieve this, there is a wide range of analytical techniques that can be adopted to understand and elucidate the mechanics of drug delivery and drug formulation. Such methods include e.g. spectroscopic analysis, diffractometric analysis, thermal investigations, surface analytical techniques, particle size analysis, rheological techniques, methods to characterize drug stability and release, and biological analysis in appropriate cell and animal models. Whilst each of these methods can encompass a full research area in their own right, formulation scientists must be able to effectively apply these methods to the delivery system they are considering. The information in this book is designed to support researchers in their ability to fully characterize and analyze a range of delivery systems, using an appropriate selection of analytical techniques. Due to its consideration of regulatory approval, this book will also be suitable for industrial researchers both at early stage up to pre-clinical research.