Modeling and Forecasting Electricity Loads and Prices


Book Description

This book offers an in-depth and up-to-date review of different statistical tools that can be used to analyze and forecast the dynamics of two crucial for every energy company processes—electricity prices and loads. It provides coverage of seasonal decomposition, mean reversion, heavy-tailed distributions, exponential smoothing, spike preprocessing, autoregressive time series including models with exogenous variables and heteroskedastic (GARCH) components, regime-switching models, interval forecasts, jump-diffusion models, derivatives pricing and the market price of risk. Modeling and Forecasting Electricity Loads and Prices is packaged with a CD containing both the data and detailed examples of implementation of different techniques in Matlab, with additional examples in SAS. A reader can retrace all the intermediate steps of a practical implementation of a model and test his understanding of the method and correctness of the computer code using the same input data. The book will be of particular interest to the quants employed by the utilities, independent power generators and marketers, energy trading desks of the hedge funds and financial institutions, and the executives attending courses designed to help them to brush up on their technical skills. The text will be also of use to graduate students in electrical engineering, econometrics and finance wanting to get a grip on advanced statistical tools applied in this hot area. In fact, there are sixteen Case Studies in the book making it a self-contained tutorial to electricity load and price modeling and forecasting.




Modeling and Forecasting Electricity Loads and Prices


Book Description

This book offers an in-depth and up-to-date review of different statistical tools that can be used to analyze and forecast the dynamics of two crucial for every energy company processes—electricity prices and loads. It provides coverage of seasonal decomposition, mean reversion, heavy-tailed distributions, exponential smoothing, spike preprocessing, autoregressive time series including models with exogenous variables and heteroskedastic (GARCH) components, regime-switching models, interval forecasts, jump-diffusion models, derivatives pricing and the market price of risk. Modeling and Forecasting Electricity Loads and Prices is packaged with a CD containing both the data and detailed examples of implementation of different techniques in Matlab, with additional examples in SAS. A reader can retrace all the intermediate steps of a practical implementation of a model and test his understanding of the method and correctness of the computer code using the same input data. The book will be of particular interest to the quants employed by the utilities, independent power generators and marketers, energy trading desks of the hedge funds and financial institutions, and the executives attending courses designed to help them to brush up on their technical skills. The text will be also of use to graduate students in electrical engineering, econometrics and finance wanting to get a grip on advanced statistical tools applied in this hot area. In fact, there are sixteen Case Studies in the book making it a self-contained tutorial to electricity load and price modeling and forecasting.




Forecasting Models of Electricity Prices


Book Description

This book is a printed edition of the Special Issue "Forecasting Models of Electricity Prices" that was published in Energies




Modeling and Forecasting Electricity Demand


Book Description

The master thesis of Kevin Berk develops a stochastic model for the electricity demand of small and medium-sized companies that is flexible enough so that it can be used for various business sectors. The model incorporates the grid load as an exogenous factor and seasonalities on a daily, weekly and yearly basis. It is demonstrated how the model can be used e.g. for estimating the risk of retail contracts. The uncertainty of electricity demand is an important risk factor for customers as well as for utilities and retailers. As a consequence, forecasting electricity load and its risk is now an integral component of the risk management for all market participants.




Advances in Electric Power and Energy Systems


Book Description

A comprehensive review of state-of-the-art approaches to power systems forecasting from the most respected names in the field, internationally Advances in Electric Power and Energy Systems is the first book devoted exclusively to a subject of increasing urgency to power systems planning and operations. Written for practicing engineers, researchers, and post-grads concerned with power systems planning and forecasting, this book brings together contributions from many of the world’s foremost names in the field who address a range of critical issues, from forecasting power system load to power system pricing to post-storm service restoration times, river flow forecasting, and more. In a time of ever-increasing energy demands, mounting concerns over the environmental impacts of power generation, and the emergence of new, smart-grid technologies, electricity price forecasting has assumed a prominent role within both the academic and industrial arenas. Short-run forecasting of electricity prices has become necessary for power generation unit schedule, since it is the basis of every maximization strategy. This book fills a gap in the literature on this increasingly important topic. Following an introductory chapter offering background information necessary for a full understanding of the forecasting issues covered, this book: Introduces advanced methods of time series forecasting, as well as neural networks Provides in-depth coverage of state-of-the-art power system load forecasting and electricity price forecasting Addresses river flow forecasting based on autonomous neural network models Deals with price forecasting in a competitive market Includes estimation of post-storm restoration times for electric power distribution systems Features contributions from world-renowned experts sharing their insights and expertise in a series of self-contained chapters Advances in Electric Power and Energy Systems is a valuable resource for practicing engineers, regulators, planners, and consultants working in or concerned with the electric power industry. It is also a must read for senior undergraduates, graduate students, and researchers involved in power system planning and operation.




Stochastic Modelling of Electricity and Related Markets


Book Description

The markets for electricity, gas and temperature have distinctive features, which provide the focus for countless studies. For instance, electricity and gas prices may soar several magnitudes above their normal levels within a short time due to imbalances in supply and demand, yielding what is known as spikes in the spot prices. The markets are also largely influenced by seasons, since power demand for heating and cooling varies over the year. The incompleteness of the markets, due to nonstorability of electricity and temperature as well as limited storage capacity of gas, makes spot-forward hedging impossible. Moreover, futures contracts are typically settled over a time period rather than at a fixed date. All these aspects of the markets create new challenges when analyzing price dynamics of spot, futures and other derivatives.This book provides a concise and rigorous treatment on the stochastic modeling of energy markets. Ornstein?Uhlenbeck processes are described as the basic modeling tool for spot price dynamics, where innovations are driven by time-inhomogeneous jump processes. Temperature futures are studied based on a continuous higher-order autoregressive model for the temperature dynamics. The theory presented here pays special attention to the seasonality of volatility and the Samuelson effect. Empirical studies using data from electricity, temperature and gas markets are given to link theory to practice.




Forecasting and Assessing Risk of Individual Electricity Peaks


Book Description

The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples. In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general.




Electrical Load Forecasting


Book Description

Succinct and understandable, this book is a step-by-step guide to the mathematics and construction of electrical load forecasting models. Written by one of the world’s foremost experts on the subject, Electrical Load Forecasting provides a brief discussion of algorithms, their advantages and disadvantages and when they are best utilized. The book begins with a good description of the basic theory and models needed to truly understand how the models are prepared so that they are not just blindly plugging and chugging numbers. This is followed by a clear and rigorous exposition of the statistical techniques and algorithms such as regression, neural networks, fuzzy logic, and expert systems. The book is also supported by an online computer program that allows readers to construct, validate, and run short and long term models. Step-by-step guide to model construction Construct, verify, and run short and long term models Accurately evaluate load shape and pricing Creat regional specific electrical load models




Electric Power Systems


Book Description

Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling helps readers develop their skills in modeling, simulating, and optimizing electric power systems. Carefully balancing theory and practice, it presents novel, cutting-edge developments in forecasting and scheduling. The focus is on understanding and solving pivotal problems in the management of electric power generation systems. Methods for Coping with Uncertainty and Risk in Electric Power Generation Outlining real-world problems, the book begins with an overview of electric power generation systems. Since the ability to cope with uncertainty and risk is crucial for power generating companies, the second part of the book examines the latest methods and models for self-scheduling, load forecasting, short-term electricity price forecasting, and wind power forecasting. Toward Optimal Coordination between Hydro, Thermal, and Wind Power Using case studies, the third part of the book investigates how to achieve the most favorable use of available energy sources. Chapters in this section discuss price-based scheduling for generating companies, optimal scheduling of a hydro producer, hydro-thermal coordination, unit commitment with wind generators, and optimal optimization of multigeneration systems. Written in a pedagogical style that will appeal to graduate students, the book also expands on research results that are useful for engineers and researchers. It presents the latest techniques in increasingly important areas of power system operations and planning.




Short-Term Load Forecasting 2019


Book Description

Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030–50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.