Modeling and Practice of Erosion and Sediment Transport under Change


Book Description

Climate and anthropogenic changes impact the conditions of erosion and sediment transport in rivers. Rainfall variability and, in many places, the increase of rainfall intensity have a direct impact on rainfall erosivity. Increasing changes in demography have led to the acceleration of land cover changes in natural areas, as well as in cultivated areas, and, sometimes, in degraded areas and desertified landscapes. These anthropogenized landscapes are more sensitive to erosion. On the other hand, the increase in the number of dams in watersheds traps a great portion of sediment fluxes, which do not reach the sea in the same amount, nor at the same quality, with consequences on coastal geomorphodynamics. This book is dedicated to studies on sediment fluxes from continental areas to coastal areas, as well as observation, modeling, and impact analysis at different scales from watershed slopes to the outputs of large river basins. This book is concentrated on a number of keywords: “erosion” and “sediment transport”, “model” and “practice”, and “change”. The keywords are briefly discussed with respect to the relevant literature. The contributions in this book address observations and models based on laboratory and field data, allowing researchers to make use of such resources in practice under changing conditions.




Modeling and Practice of Erosion and Sediment Transport Under Change


Book Description

Climate and anthropogenic changes impact the conditions of erosion and sediment transport in rivers. Rainfall variability and, in many places, the increase of rainfall intensity have a direct impact on rainfall erosivity. Increasing changes in demography have led to the acceleration of land cover changes in natural areas, as well as in cultivated areas, and, sometimes, in degraded areas and desertified landscapes. These anthropogenized landscapes are more sensitive to erosion. On the other hand, the increase in the number of dams in watersheds traps a great portion of sediment fluxes, which do not reach the sea in the same amount, nor at the same quality, with consequences on coastal geomorphodynamics. This book is dedicated to studies on sediment fluxes from continental areas to coastal areas, as well as observation, modeling, and impact analysis at different scales from watershed slopes to the outputs of large river basins. This book is concentrated on a number of keywords: "erosion" and "sediment transport", "model" and "practice", and "change". The keywords are briefly discussed with respect to the relevant literature. The contributions in this book address observations and models based on laboratory and field data, allowing researchers to make use of such resources in practice under changing conditions.




Modeling of Soil Erosion and Sediment Transport


Book Description

The Special Issue entitled "Modeling of Soil Erosion and Sediment Transport" focuses on the mathematical modeling of soil erosion caused by rainfall and runoff at a basin scale, as well as on the sediment transport in the streams of the basin. In concrete terms, the quantification of these phenomena by means of mathematical modeling and field measurements has been studied. The following mathematical models (software) were used, amongst others: AnnAGNPS, SWAT, SWAT-Twn, TUSLE, WRF-Hydro-Sed, CORINE, LCM-MUSLE, EROSION-3D, HEC-RAS, SRC, WA-ANN. The Special Issue contains 14 articles that can be classified into the following five categories: Category A: "Soil erosion and sediment transport modeling in basins"; Category B: "Inclusion of soil erosion control measures in soil erosion models"; Category C: "Soil erosion and sediment transport modeling in view of reservoir sedimentation"; Category D: "Field measurements of gully erosion"; Category E: "Stream sediment transport modeling". Most studies presented in the Special Issue were applied to different basins in Europe, America, and Asia, and are the result of the cooperation between universities and/or research centers in different countries and continents, which constitutes an optimistic fact for the international scientific communication.




Handbook of Engineering Hydrology


Book Description

While most books only examine the classical aspects of hydrology, the three-volume set covers multiple aspects of hydrology, and includes contributions from experts from more than 30 countries. It examines new approaches, addresses growing concerns about hydrological and ecological connectivity, and considers the worldwide impact of climate change. It also provides updated material on hydrological science and engineering, discussing recent developments as well as classic approaches. Published in three books, Fundamentals and Applications; Modeling, Climate Change, and Variability; and Environmental Hydrology and Water Management, the entire set consists of 87 chapters, and contains 29 chapters in each book. The chapters in this book contain information on: Long-term generation of scheduling of hydro plants, check dam selection procedures in rainwater harvesting, and stochastic reservoir analysis Ecohydrology for engineering harmony in the changing world, concepts, and plant water use Conjunctive use of groundwater and surface water Hydrologic and hydraulic design in green infrastructure Data processing in hydrology, optimum hydrometric site selection and quality control, and homogenization of climatological series Cold region hydrology, evapotranspiration, and water consumption Modern flood prediction and warning systems, and satellite-based systems for flood monitoring and warning Catchment water yield estimation, hydrograph analysis and base flow separation, and low flow hydrology Sustainability in urban water systems and urban hydrology Students, practitioners, policy makers, consultants and researchers can benefit from the use of this text.




Erosion and Sedimentation Manual


Book Description

NOTE: NO FURTHER DISCOUNT FOR THIS PRINT PRODUCT--OVERSTOCK SALE --Significantly reduced list price while supplies last The Erosion and Sedimentation Manual provides a comprehensive coverage of subjects in nine chapters (i.e., introduction, erosion and reservoir sedimentation, noncohesive sediment transport, cohesive sediment transport, sediment modeling for rivers and reservoirs, sustainable development and use of reservoirs, river process and restoration, dam decommissioning and sediment management, and reservoir surveys and data analysis). Each chapter is self-contained, with cross references of subjects that are discussed in different chapters of this manual. The manual also includes a list of commonly used notations used in the erosion and sedimentation literature, conversion factors between the Imperial and metric units, physical properties of water, and author and subject indexes for easy reference. Each chapter has a list of reference for readers who would like to seek out more detailed information on specific subjects. Audience The manual would be useful for researchers, university professors, graduate students, geologists, hydrographic survey analysts, municipal and state water research specialists, and engineers in solving erosion and sedimentation problems. Related products: Earth Science resources collection can be found here: https: //bookstore.gpo.gov/catalog/science-technology/earth-science




Sedimentation Engineering


Book Description

MOP 110 presents extensive advances in methods of investigation, measurement, and analysis in the specialized field of sedimentation engineering.




Wadi Flash Floods


Book Description

This open access book brings together research studies, developments, and application-related flash flood topics on wadi systems in arid regions. The major merit of this comprehensive book is its focus on research and technical papers as well as case study applications in different regions worldwide that cover many topics and answer several scientific questions. The book chapters comprehensively and significantly highlight different scientific research disciplines related to wadi flash floods, including climatology, hydrological models, new monitoring techniques, remote sensing techniques, field investigations, international collaboration projects, risk assessment and mitigation, sedimentation and sediment transport, and groundwater quality and quantity assessment and management. In this book, the contributing authors (engineers, researchers, and professionals) introduce their recent scientific findings to develop suitable, applicable, and innovative tools for forecasting, mitigation, and water management as well as society development under seven main research themes as follows: Part 1. Wadi Flash Flood Challenges and Strategies Part 2. Hydrometeorology and Climate Changes Part 3. Rainfall–Runoff Modeling and Approaches Part 4. Disaster Risk Reduction and Mitigation Part 5. Reservoir Sedimentation and Sediment Yield Part 6. Groundwater Management Part 7. Application and Case Studies The book includes selected high-quality papers from five series of the International Symposium on Flash Floods in Wadi Systems (ISFF) that were held in 2015, 2016, 2017, 2018, and 2020 in Japan, Egypt, Oman, Morocco, and Japan, respectively. These collections of chapters could provide valuable guidance and scientific content not only for academics, researchers, and students but also for decision-makers in the MENA region and worldwide.




Rainfall Erosivity in Soil Erosion Processes


Book Description

This book gathers recent international research on the association between aggressive rainfall and soil loss and landscape degradation. Different contributions explore these complex relationships and highlight the importance of the spatial patterns of precipitation intensity on land flow under erosive storms, with the support of observational and modelling data. This is a large and multifaceted area of research of growing importance that outlines the challenge of protecting land from natural hazards. The increase in the number of high temporal resolution rainfall records together with the development of new modelling capabilities has opened up new opportunities for the use of large-scale planning and risk prevention methods. These new perspectives should no longer be considered as an independent research topic, but should, above all, support comprehensive land use planning, which is at the core of environmental decision-making and operations. Textbooks such as this one demonstrate the significance of how hydrological science can enable tangible progress in understanding the complexity of water management and its current and future challenges.




River Dynamics


Book Description

Rivers are important agents of change that shape the Earth's surface and evolve through time in response to fluctuations in climate and other environmental conditions. They are fundamental in landscape development, and essential for water supply, irrigation, and transportation. This book provides a comprehensive overview of the geomorphological processes that shape rivers and that produce change in the form of rivers. It explores how the dynamics of rivers are being affected by anthropogenic change, including climate change, dam construction, and modification of rivers for flood control and land drainage. It discusses how concern about environmental degradation of rivers has led to the emergence of management strategies to restore and naturalize these systems, and how river management techniques work best when coordinated with the natural dynamics of rivers. This textbook provides an excellent resource for students, researchers, and professionals in fluvial geomorphology, hydrology, river science, and environmental policy.




Fine Sediment In Open Water: From Fundamentals To Modeling


Book Description

Fine Sediment in Open Water is mainly written for professional engineers working in estuaries and coastal systems. It provides the basis for a fundamental understanding of the physical, biological and chemical processes governing the transport and fate of fine sediment in open water and explains how this understanding can steer engineering studies with numerical models. This is a unique treatment of processes at a variety of spatial and temporal scales, from the micro-scale (colloid scale) to system-wide scales, and from intra-tidal time periods to decades.Beginning with the processes governing the transport and fate of fine sediment in shallow open water, the first eight chapters are dedicated to the hydrodynamic, soil mechanics and biological processes which determine fine sediment concentrations in the water column, in/on the bed and the exchange of sediment between bed and water column. The next two chapters treat the net fluxes of fine sediment as a function of asymmetries in forcing and sediment properties. These fundamental processes form the basis for the subsequent chapters on modeling in which the governing equations are presented, and tools are provided to aggregate and parameterize the various processes elaborated in the first eight chapters. Further, any numerical model study should be based on a conceptual model, as illustrated in the final five chapters, which provide examples of numerical modeling studies on the transport and fate of fine sediment in a coastal sea, an estuary, a tidal river, a lake, and around and within a harbor basin.Related Link(s)